【题目】(7分)如图,已知抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点.
(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.
【答案】(1)y=(x﹣1)2﹣4,(1,﹣4).(2) 0<x<3;(3)P点坐标为(﹣2,5)或(4,5).
【解析】(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,
得: ,解得: ,
∴抛物线的解析式为y=x2﹣2x﹣3.
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).
(2)由图可得当0<x<3时,﹣4≤y<0.
(3)∵A(﹣1,0)、B(3,0),∴AB=4.
设P(x,y),则S△PAB=AB|y|=2|y|=10,∴|y|=5,∴y=±5.
①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,
此时P点坐标为(﹣2,5)或(4,5);
②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;
综上所述,P点坐标为(﹣2,5)或(4,5).
科目:初中数学 来源: 题型:
【题目】(1)如图①,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于点D,AE平分∠BAC,求∠EAD的度数;
(2)将(1)中“∠B=40°,∠C=80°”改为“∠B=x°,∠C=y°,∠C>∠B”,
①其他条件不变,你能用含x,y的代数式表示∠EAD吗?请写出,并说明理由;
②如图②,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,用含x,y的代数式表示∠EFM,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是( )
A. 24m B. 25m C. 28m D. 30m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=米,背水坡CD的坡度i=1: (i为DF与FC的比值),则背水坡CD的坡长为_______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了________秒,粒子运动60秒后的坐标为_________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com