精英家教网 > 初中数学 > 题目详情

【题目】如图①,在ABC 中,AD平分∠BACAEBC,∠B=40°,∠C=70°.

(1)求∠DAE的度数;

(2)如图②,若把“AEBC”变成“点FDA的延长线上,FEBC”,其它条件不变,求∠DFE的度数.

【答案】(1)∠ADE=75°;(2)∠DFE=15°

【解析】试题分析:(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.

(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.

试题解析:(1)∵∠B=40°,∠C=70°,

∴∠BAC=70°

CF平分∠DCE

∴∠BAD=∠CAD=35°

∴∠ADE=∠B+∠BAD=75°

AEBC

∴∠AEB=90°,

∴∠DAE=90°-∠ADE=15°.

(2)同(1),可得∠ADE=75°

FEBC,

∴∠FEB=90°,

∴∠DFE=90°-ADE=15°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:

⑴ 请在网格中建立平面直角坐标系, 使A点坐标为(2,4),B点坐标为(4,2);

⑵ 请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是 , △ABC的周长是 (结果保留根号);

⑶ 以(2)中△ABC的点C为旋转中心、旋转180°后的△ABC, 连结AB′和AB, 试说出四边形ABAB′是何特殊四边形, 并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.

(1)求证:△ABE≌△CDF;

(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:

1)请直接写出快、慢两车的速度;

2)求快车返回过程中y(千米)与x(小时)的函数关系式;

3)两车出发后经过多长时间相距90千米的路程?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(7分)如图,已知抛物线yx2bxc经过A(-1,0),B(3,0)两点.

(1)求抛物线的解析式和顶点坐标;

(2)当0<x<3时,求y的取值范围;

(3)点P为抛物线上一点,若SPAB=10,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个数的绝对值除以这个数所得的商是-1,则这个数一定是(

A.-1B.1-1C.负数D.正数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AFD=∠1AC∥DE

(1)试说明:DF∥BC

(2)若∠1=68°DF平分∠ADE,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中, ,点上,点的内部, 平分,且.

(1)求证:

(2)求证:点是线段的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点A(0,a),点B(b,0),其中a,b满足,点C(m,n)在第一象限,已知2的立方根.

直接写出A,B,C三点的坐标;

求出ABC的面积;

如图2,延长BCy轴于D点,求点D的坐标

如图3,过点CCEABy轴于E,E点的坐标.

查看答案和解析>>

同步练习册答案