【题目】如图,在菱形ABCD中,点E是BC边的中点,动点M在CD边上运动,以EM为折痕将△CEM折叠得到△PEM,连接PA,若AB=4,∠BAD=60°,则PA的最小值是_____.
![]()
科目:初中数学 来源: 题型:
【题目】某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:
售价 | 20 | 30 | 40 |
日销售量 | 80 | 60 | 40 |
(1)求
关于
的函数解析式(不要求写出自变量的取值范围);
(2)
为多少时,当天的销售利润
(元)最大?最大利润为多少?
(3)由于产量日渐减少,该商品进价提高了
元/
,物价部门规定该商品售价不得超过36元/
,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并用相关的思想方法解决问题.
例:若多项式
分解因式的结果中有因式
,求实数
的值.
解:设![]()
若
,则
或![]()
由
得![]()
则
是方程
的解
所以
,即
,所以
.
解决问题:(1)若多项式
分解因式的结果中有因式
,求实数
的值;
(2)若多项式
分解因式的结果中有因式
和
.
①求出
、
的值;
②直接写出方程
的解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线
(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
(1)求抛物线的解析式;
(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.
(1)求抛物线C2的解析式;
(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;
(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.
(1)A、B两种奖品每件各多少元?
(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
于
,以
直径作
,交
于点
恰有
,连接
.
(1)如图1,求证:
;
![]()
(2)如图2,连接
分别交
,
于点
连接
试探究
与
之间的数量关系,并说明理由;
![]()
(3)在(2)的基础上,若
,求
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们曾学过定理“在直角三角形中,如果一个锐角等于
,那么它所对的直角边等于斜边的一半”,其逆命题也是成立的,即“在直角三角形中,如果一直角边等于斜边的一半,那么该直角边所对的角为
”.如图,在
中,
,如果
,那么
.
![]()
请你根据上述命题,解决下面的问题:
![]()
(1)如图1,
,
为格点,以
为圆心,
长为半径画弧交直线
于点
,则
______
;
(2)如图2,
、
为格点,按要求在网格中作图(保留作图痕迹)。
作
,使点
在直线
上,并且
,
.
(3)如图3,在
中,
,
,
为
内一点,
,
于
,且
.
①求
的度数;
②求证:
.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,曲线
是抛物线
的一部分(其中
是抛物线与
轴的交点,
是顶点),曲线
是双曲线
的一部分.曲线
与
组成图形
.由点
开始不断重复图形
形成一组“波浪线”.若点
,
在该“波浪线”上,则
的最大值为( )
![]()
A.5B.6C.2020D.2021
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com