精英家教网 > 初中数学 > 题目详情

如图,抛物线数学公式与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)在过点E(4,0)的真线上是否存在这样的点M,使得∠AMB为直角?若存在,求出点M的坐标;若不存在,请说明理由.

解:(1)令y=0,则-x2-x+3=0,
整理得,x2+2x-8=0,
解得x1=-4,x2=2,
∴点A(-4,0),B(2,0);

(2)令x=0,则y=3,
所以,点C的坐标为(0,3),
又∵AB=2-(-4)=2+4=6,
∴S△ABC=×6×3=9,
设直线AC的解析式为y=kx+b(k≠0),

解得
所以,直线AC的解析式为y=x+3,
抛物线的对称轴为直线x=-=-1,
所以,x=-1时,y=(-1)×+3=
设对称轴与直线AC相交于H,
则点H的坐标为(-1,),
∵△ACD的面积等于△ACB的面积,
∴S△ACD=S△ADH+S△CDH
=DH×4=6,
解得DH=
点D在AC的上方时,+=
此时点D的坐标为(-1,),
点D在AC的下方时,-=-
此时,点D的坐标为(-1,-),
综上所述,△ACD的面积等于△ACB的面积时,点D的坐标为(-1,)或(-1,-);

(3)根据直径所对的圆周角是直角,以AB为直径作⊙F,
则过点E的直线与⊙F的切点即为所求的点M,
如图,连接FM,过点M作MN⊥x轴于N,
∵A(-4,0),B(2,0),E(4,0),
∴点F(-1,0),
FM=×6=3,EF=4+1=5,
根据勾股定理,ME===4,
易得△FMN∽△FEM,
==
==
解得MN=,FN=
∴ON=FN-OF=-1=
∴点M在x轴上方时,点M的坐标为(),
点M在x轴下方时,点M的坐标为(,-),
综上所述,点M的坐标为()或(,-).
分析:(1)令y=0,解关于x的一元二次方程即可得到点A、B的坐标;
(2)求出点C的坐标,然后求出AB的长,再根据三角形的面积公式求出△ABC的面积,再求出直线AC的解析式,根据抛物线的解析式求出对称轴,设对称轴与直线AC相交于H,根据S△ACD=S△ADH+S△CDH,列式求出DH的长,再分点D在AC的上方与下方两种情况讨论求出点D的坐标即可;
(3)根据直径所对的圆周角是直角,以AB为直径作⊙F,过点E的直线与⊙F的切点即为所求的点M,连接FM,过点M作MN⊥x轴于N,先求出EF、FN再根据勾股定理列式求出ME,然后根据△FMN和△FEM相似,利用相似三角形对应边成比例列式求出MN、FN,再求出ON,再分点M在x轴上方与下方两种情况写出点M的坐标.
点评:本题考查了关键是二次函数、一次函数以及圆等知识的综合运用.难点在于第(3)问中对于∠AMB为直角的理解,这可以从直线与圆的位置关系方面入手解决.本题难度较大,需要同学们对所学知识融会贯通、灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于C(0,3),M是抛物线对称轴上的任意一点,则△AMC的周长最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一个动点,连接MA、MC,当△MAC的周长最小时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案