【题目】已知,,是等圆,内接于,点,分别在,上.如图,
①以为圆心,长为半径作弧交于点,连接;
②以为圆心,长为半径作弧交于点,连接;
下面有四个结论:
①
②
③
④
所有正确结论的序号是( ).
A.①②③④B.①②③C.②④D.②③④
科目:初中数学 来源: 题型:
【题目】如图,与轴交于点C,与轴的正半轴交于点K,过点作轴交抛物线于另一点B,点在轴的负半轴上,连结交轴于点A,若.
(1)用含的代数式表示的长;
(2)当时,判断点是否落在抛物线上,并说明理由;
(3)过点作轴交轴于点延长至,使得连结交轴于点连结AE交轴于点若的面积与的面积之比为则求出抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年3月15日,我国“两会”落下帷幕.13天时间里,来自各地的5000余名代表、委员聚于国家政治中心,共议国家发展大计.某校初三(3)班张老师为了了解同学们对“两会”知识的知晓情况,进行了一次小测试,测试满分100分.其中
A组同学的测试成绩分别为:91 91 86 93 85 89 89 88 87 91
B组同学的测试成绩分别为:88 97 88 85 86 94 84 83 98 87
根据以上数据,回答下列问题:
(1)完成下表:
组别 | 平均数 | 中位数 | 众数 | 方差 |
A组 | 89 | 89 | b | c |
B组 | 89 | a | 88 | 26.2 |
其中a= ,b= ,c= ,
(2)张老师将B组同学的测试成绩分成四组并绘制成如图所示频数分布直方图(不完整),请补全;
(3)根据以上分析,你认为 组(填“A”或“B”)的同学对今年“两会”知识的知晓情况更好一些,请写出你这样判断的理由(至少写两条):① ② .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形中,对角线,,动点、分别从点、同时出发,运动速度都是,点由向运动;点由向运动,当到达点时,,两点运动停止,设时间为秒.连接,,.
(1)当为何值时,;
(2)设的面积为,请写出与的函数关系式;
(3)当为何值时,的面积是四边形面积的;
(4)是否存在值,使得线段经过的中点;若存在,求出值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°,且AB=6,过O点作OE⊥AC,垂足为E.
(1)求OE的长;
(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果精确到0.01)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.
(1)若α=60°,k=1,
①如图1,当Q为BC中点时,求∠PAC的度数;
②直接写出PA、PQ的数量关系;
(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的抛物线对称轴是直线x=1,与x轴有两个交点,与y轴交点坐标是(0,3),把它向下平移2个单位后,得到新的抛物线解析式是 y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,判断正确的有( )
A. ②③④B. ①②③C. ②③D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O为BC上一点,以点O为圆心、OB的长为半径作圆,交BC于点F,交AB于点D,过点D作⊙O的切线,交AC于点E.
(1)求证:AE=DE;
(2)若,CF=2,BF=10,求AD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com