精英家教网 > 初中数学 > 题目详情

【题目】如图,点P,Q分别是∠AOB的边OA,OB上的点.

(1)过点POB的垂线,垂足为H;

(2)过点QOA的垂线,交OA于点C,连接PQ;

(3)线段QC的长度是点Q 的距离, 的长度是点P到直线OB的距离,因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段PQ、PH的大小关系是 (用“<”号连接).

【答案】(1)画图见解析;(2)见解析;(3)直线OA,线段PH;PH<PQ.

【解析】

1)根据垂线的概念、结合网格特点作图即可;(2)根据垂线的概念、结合网格特点和线段的作法作图;(3)根据垂线段最短进行比较即可.

1)如图,直线PH即为所求;
2)如图,直线QC即为所求;


3)线段QC的长度是点Q到直线OA的距离,线段PH的长度是点P到直线OB的距离,
根据直线外一点和直线上各点连接的所有线段中,垂线段最短可知PHPQ
故答案为:直线OA,线段PHPHPQ

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,下列说法中正确的个数是(  )

①CE=BF;②△ABD和ADC的面积相等;③BF∥CE;④CE,BF均与AD垂直

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两条直线都与第三条直线相交,∠1和∠2是内错角,∠3和∠2是邻补角.

(1)根据上述条件,画出符合题意的图形;

(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,O是对角线的交点,过点O作OE⊥OF,分别交AD,CD于E,F,若AE=6,CF=4,则EF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某次反潜演习中,红方军舰A测得蓝方潜艇C的俯角为31°,位于军舰A正上方800米的红方反潜直升机B测得潜艇C的俯角为65°.试根据以上数据求出潜艇C离开海平面的下潜深度(结果保留整数)
(参考数据:sin31°≈ ,tan31°≈ ,sin65°≈ ,tan65°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:用水平线和竖直线将平面分成若干个面积为1的小长方形格子,小长方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x,多边形内部的格点数为n,S与x,n之间是否存在一定的数量关系呢?
(1)问题探究:
如图1,图中所示的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请填写下表并写出S与x之间的关系式S=

多边形的序号

多边形的面积S

2

2.5

3

4

各边上格点的个数和x

4


(2)在图2中所示的格点多边形,这些多边形内部都有且只有2个格点.探究此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=
(3)请继续探索,当格点多边形内部有且只有n(n是正整数)个格点时,猜想S与x,n之间的关系式S=(用含有字母x,n的代数式表示)
(4)问题拓展:
请在正三角形网格中的类似问题进行探究:在图3、4中正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,图是该正三角形格点中的两个多边形.
根据图中提供的信息填表:

格点多边形各边上的格点的个数

格点多边形内部的格点个数

格点多边形的面积

多边形1(图3)

8

1

8

多边形2(图4)

7

3

11

一般格点多边形

a

b

S

则S与a,b之间的关系为S=(用含a,b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线ab互相平行的是( )

A. 如图1,展开后测得∠1=∠2

B. 如图2,展开后测得∠1=∠2∠3=∠4

C. 如图3,测得∠1=∠2

D. 如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OBOC=OD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l,交抛物线于点Q.

(1)求抛物线的解析式;
(2)求直线BD的解析式;
(3)当点P在线段OB上运动时,直线l交BD于点M,是否存在点P,使得四边形CQMD是平行四边形?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是(
A.当m=﹣3时,函数图象的顶点坐标是(
B.当m>0时,函数图象截x轴所得的线段长度大于
C.当m≠0时,函数图象经过同一个点
D.当m<0时,函数在x 时,y随x的增大而减小

查看答案和解析>>

同步练习册答案