精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠ABC=45°,AD是∠BAC的平分线,EF垂直平分AD,交BC的延长线于F,则∠CAF的大小是
45
45
度.
分析:由EF垂直平分AD,可得FA=FD,则∠FDA=∠FAD,由角之间的和的关系可得∠FDA=∠B+∠BAD,由三角形的外角性质可得∠FAD=∠CAF+∠DAC,因为AD是∠BAC的平分线,所以∠BAD=∠DAC,即可得到∠CAF=∠B=45°.
解答:解:∵EF是AD的垂直平分线,
∴FA=FD,
∴∠FDA=∠FAD,
∵∠FDA=∠B+∠BAD,
∠FAD=∠CAF+∠DAC,
∵AD是∠BAC的平分线,
∴∠BAD=∠DAC,
∴∠CAF=∠B=45°.
故答案为:45°.
点评:此题主要考查角平分线的定义和线段垂直平分线的性质,寻找角之间的关系是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案