【题目】下列计算正确的是( )
A.b5b5=2b5
B.(an﹣1)3=a3n﹣1
C.a+2a2=3a3
D.(a﹣b)5(b﹣a)4=(a﹣b)9
科目:初中数学 来源: 题型:
【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度).
(1)作出△ABC绕点A顺时针方向旋转90°后得到的△A1B1C1,并直接写出C1点的坐标;
(2)作出△ABC关于原点O成中心对称的△A2B2C2,并直接写出B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴、y轴相交于B、C两点,抛物线y=ax2+bx+3经过点B,对称轴为直线x=1.
(1)求a和b的值;
(2)点P是直线BC上方抛物线上任意一点,设点P的横坐标为t,△PBC的面积为S,求S与t之间的函数关系式,并写出t的取值范围;
(3)P为抛物线上的一点,连接AC,当∠BCP=∠ACO时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.求证:
(1)△ADC≌△CEB;
(2)DE=AD+BE.
(3)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com