精英家教网 > 初中数学 > 题目详情

【题目】跳绳是大家喜闻乐见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线,下图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的手之间的距离为4,离地面的高度为1,以小明的手所在位置为原点建立平面直角坐标系.

(1)当身高为15的小红站在绳子的正下方,且距小明拿绳子手的右侧1处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的表达式;

(2)若身高为的小丽也站在绳子的正下方.

①当小丽在距小亮拿绳子手的左侧1.5处时,绳子能碰到小丽的头吗?请说明理由;

②设小丽与小亮拿绳子手之间的水平距离为,为保证绳子不碰到小丽的头顶,的取值范围.(参考数据: 3.16)

【答案】1;(2)①绳子能碰到小丽的头,理由见解析;②.

【解析】

1)因为抛物线过原点,可设抛物线的解析式为:y=ax2+bxa≠0),把小亮拿绳子的手的坐标(40),以及小红头顶坐标(11.5-1)代入,得到二元一次方程组,解方程组便可;

2)①由自变量的值求出函数值,再比较便可;②由y=0.65时求出其自变量的值,便可确定d的取值范围.

1)根据题意,设绳子所对应的抛物线的表达式为

∴抛物线经过点和点

,解得

∴绳子对应的抛物线表达式为

2)①绳子能碰到小丽的头

理由如下:

∵小丽在距小亮拿绳子手的左侧1.5处,

∴小丽所在位置与原点距离为

∴当时,

∴绳子能碰到小丽的头.

②∵1.65-1=0.65,∴当时,

,解得:

3.16

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,AB之间的距离为49cm,现测得ACBCAB的夹角分别为45°,68°.若点C到地面的距离CD28cm,坐垫中轴E处与点B的距离BE5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93cos68°≈0.37tan68°≈2.50.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线yx轴、y轴分别交于点BC,抛物线yBC两点,且与x轴的另一个交点为点A,连接AC

1)求抛物线的解析式;

2)在抛物线上是否存在点D(与点A不重合),使得SDBCSABC,若存在,求出点D的坐标;若不存在,请说明理由;

3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点PQMN为顶点的四边形是平行四边形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,认真观察下面这些算式,并结合你发现的规律,完成下列问题:

1)请写出:

算式⑤

算式⑥

2)上述算式的规律可以用文字概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为 (为整数),请说明这个规律是成立的;

(3)你认为两个连续偶数的平方差能被8整除这个说法是否也成立呢?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形和正六边形 边长均为1,如图所示,把正方形放置在正六边形外,使边与边重合,按下列步骤操作:将正方形在正六边形外绕点逆时针旋转,使边与边重合,完成第一次旋转再绕点逆时针旋转,使边与边重合,完成第二次旋转;此时点经过路径的长为_________:若按此方式旋转,共完成六次,在这个过程中,之间距离的最大值是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC中,∠ACB=90°AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.

(1)如图①,若⊙O经过点C,交BC于点D,求CD的长.

(2)(1)的条件下,若BC边交l于点EOE=2,求BE的长.

(3)如图②,若直线l还经过点CBC是⊙O 的切线,F为切点,则CF的长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识背景

a0x0时,因为(20,所以x﹣2+0,从而x+(当x=时取等号).

设函数y=x+(a0,x0),由上述结论可知:当x=时,该函数有最小值为2

应用举例

已知函数为y1=x(x0)与函数y2=(x0),则当x==2时,y1+y2=x+有最小值为2=4.

解决问题

(1)已知函数为y1=x+3(x﹣3)与函数y2=(x+3)2+9(x﹣3),当x取何值时,有最小值?最小值是多少?

(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=20cm,AD=30cm,ABC=60°,点Q从点B出发沿BA向点A匀速运动,速度为2cm/s,同时,点P从点D出发沿DC向点C匀速运动,速度为3cm/s,当点P停止运动时,点Q也随之停止运动,过点PPMADAD于点M,连接PQ、QM.设运动的时间为ts(0<t≤6).

(1)当PQPM时,求t的值;

(2)设PQM的面积为y(cm2),求yt之间的函数关系式;

(3)是否存在某一时刻t,使得PQM的面积是ABCD面积的?若存在,求出相应t的值;若不存在,请说明理由;

(4)过点MMNABBC于点N,是否存在某一时刻t,使得P在线段MN的垂直平分线上?若存在,求出相应t的值;若不存在,请说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线轴交于两点,与轴交于点.

1)求抛物线解析式:

2)抛物线对称轴上存在一点,连接,当值最大时,求点H坐标:

3)若抛物线上存在一点,当时,求点坐标:

4)若点M平分线上的一点,点是平面内一点,若以为顶点的四边形是矩形,请直接写出点坐标.

查看答案和解析>>

同步练习册答案