精英家教网 > 初中数学 > 题目详情

【题目】如图,认真观察下面这些算式,并结合你发现的规律,完成下列问题:

1)请写出:

算式⑤

算式⑥

2)上述算式的规律可以用文字概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为 (为整数),请说明这个规律是成立的;

(3)你认为两个连续偶数的平方差能被8整除这个说法是否也成立呢?请说明理由.

【答案】1(2) 见解析;(3)不成立;举反例,理由见解析.

【解析】

1112-92=11+9)(11-9=40=8×5132-112=13+11)(13-11=48=8×6

2)(2n+12-2n-12=2n+1+2n-1)(2n+1-2n+1=2×4n=8n

3)举反例,如42-22=4+2)(4-2=12

解:(1

(2)

为整数,

∴两个连续奇数的平方差能被8整除.

3)不成立;

举反例,如:

12不是8的倍数,

∴这个说法不成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2mA处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(xk)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )

A. 球不会过网 B. 球会过球网但不会出界

C. 球会过球网并会出界 D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某乡镇中学教学楼对面是一座小山,去年“联通”公司在山顶上建了座通讯铁塔.甲、乙两位同学想测出铁塔的高度,他们用测角器作了如下操作:甲在教学楼顶A处测得塔尖M的仰角为α,塔座N的仰角为β;乙在一楼B处只能望到塔尖M,测得仰角为θ(望不到底座),他们知道楼高AB20m,通过查表得:tanα0.5723tanβ0.2191tanθ0.7489;请你根据这几个数据,结合图形推算出铁塔高度MN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的对角线相交于点,且AE∥BDBE∥ACOE = CD.

1)求证:四边形ABCD是菱形;

2)若AD = 2,则当四边形ABCD的形状是_______________时,四边形的面积取得最大值是_________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,给出如下定义:若上存在一点不与重合,使点关于直线的对称点上,则称的反射点.下图为的反射点的示意图.

1)已知点的坐标为的半径为

①在点中,的反射点是____________

②点在直线上,若的反射点,求点的横坐标的取值范围;

2的圆心在轴上,半径为轴上存在点的反射点,直接写出圆心的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科普小组有5名成员,身高(单位:cm)分别为:160165170163172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )

A.平均数变小,方差变小B.平均数变大,方差变大

C.平均数变大,方差不变D.平均数变大,方差变小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】跳绳是大家喜闻乐见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线,下图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的手之间的距离为4,离地面的高度为1,以小明的手所在位置为原点建立平面直角坐标系.

(1)当身高为15的小红站在绳子的正下方,且距小明拿绳子手的右侧1处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的表达式;

(2)若身高为的小丽也站在绳子的正下方.

①当小丽在距小亮拿绳子手的左侧1.5处时,绳子能碰到小丽的头吗?请说明理由;

②设小丽与小亮拿绳子手之间的水平距离为,为保证绳子不碰到小丽的头顶,的取值范围.(参考数据: 3.16)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是O的内接四边形,AC为直径,,DEBC,垂足为E

1求证:CD平分ACE;

2判断直线ED与O的位置关系,并说明理由;

3若CE=1,AC=4,求阴影部分的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数ykx+bk≠0)的图象与反比例函数yn≠0)的图象交于第二、四象限内的AB两点与x轴交于点C,点B坐标为(m,﹣1),ADx轴,且AD3tanAOD

1)求该反比例函数和一次函数的解析式;

2)连接OB,求SAOCSBOC的值;

3)点Ex轴上一点,且AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).

查看答案和解析>>

同步练习册答案