分析 (1)过O作OD⊥AB于E,交⊙O于D,根据题意OE=$\frac{1}{2}$OA,得出∠OAE=30°,∠AOE=60°,从而求得∠AOB=2∠AOE=120°,根据弧长公式求得弧AB的长,然后根据圆锥的底面周长等于弧长得出2πr=4π,即可求得这个圆锥的底面圆半径;
(2)连接OB,根据切线的性质得出∠OBC=90°,根据三角形外角的性质得出∠C=30°,从而得出∠BAC=∠C,根据等角对等边即可证得结论.
解答
解:(1)设圆锥的底面圆半径为r,
过O作OD⊥AB于E,交⊙O于D,连接OB,
有折叠可得 OE=$\frac{1}{2}$OD,
∵OD=OA,
∴OE=$\frac{1}{2}$OA,
∴在Rt△AOE中∠OAE=30°,则∠AOE=60°,
∵OD⊥AB,
∴∠AOB=2∠AOE=120°,
∴弧AB的长为:$\frac{120×π×6}{180}$=4π,
∴2πr=4π,
∴r=2;
(2)∵∠AOB=120°,
∴∠BOC=60°,
∵BC是⊙O的切线,
∴∠CBO=90°
∴∠C=30°,
∴∠OAE=∠C,
∴AB=BC.
点评 本题考查了折叠的性质,垂径定理,弧长的计算,切线的性质以及等腰三角形的判定和性质,找出辅助线构建直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $1÷6×\frac{1}{6}=\frac{1}{36}$ | B. | (-2)-2=4 | C. | $\frac{1}{3}-2-(-2\frac{1}{3})=\frac{2}{3}$ | D. | 20150=1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 13.5万元 | B. | 45万元 | C. | 54万元 | D. | 100万元 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 众数 | 中位数 | 平均数 | 方差 |
| 9.2 | 9.1 | 9.1 | 0.2 |
| A. | 众数 | B. | 中位数 | C. | 平均数 | D. | 方差 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com