【题目】已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ
(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径。
(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设∠NOP=α,∠OPN=β,若AB平行于ON,探究α与β的数量关系。
【答案】(1);(2)α+2β=90°,见解析
【解析】
(1)连接AB,由已知得到∠APB=∠APQ+BPQ=90°,根据圆周角定理证得AB是⊙O的直径,然后根据勾股定理求得直径,即可求得半径;
(2)连接OA、OB、OQ,由证得∠APQ=∠BPQ,即可证得OQ⊥ON,然后根据三角形内角和定理证得2∠OPN+∠PON+∠NOQ=180°,,即可证得α+2β=90°.
(1)连接AB,
∵∠APQ=∠BPQ=45°,
∴∠APB=∠APQ+BPQ=90°,
∴AB是⊙O的直径,
∴AB=,
∴⊙O的半径为;
(2)α+2β=90°,
证明:连接OA、OB、OQ,
∵∠APQ=∠BPQ,
∴,
∴∠AOQ=∠BOQ,
∵OA=OB,
∴OQ⊥AB,
∵ON∥AB,
∴NO⊥OQ,
∴∠NOQ=90°,
∵OP=OQ,
∴∠OPN=∠OQP,
∵∠OPN+∠OQP+∠PON+∠NOQ=180°,
∴2∠OPN+∠PON+∠NOQ=180°,
∴∠NOP+2∠OPN=90°,
∵∠NOP=α,∠OPN=β,
∴α+2β=90°.
【解答】
解:
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,
(1)求证:CF为⊙O的切线;
(2)若四边形ACFD是平行四边形,求sin∠BAD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数的图像与x轴相交于点A,与y轴相交于点B,二次函数图像经过点A、B,与x轴相交于另一点C.
(1)求a、b的值;
(2)在直角坐标系中画出该二次函数的图像;
(3)求∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.
(1)求证:DE是⊙O的切线;
(2)当⊙O半径为3,CE=2时,求BD长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD顶点A在函数y=(x>0)的图像上,函数y=(k>4,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=4,∠ADC=150°,则k=______。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.
(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;
(2)如图②,若点F为弧AD的中点,⊙O的半径为2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;
(2)当点在上时.
①求证:;
②如图2,在上取一点,使,连结.求证:;
(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,=,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】袋中有形状、大小、质地完全一样的3个红球和2个白球,下列说法正确的是( )
A.从中随机抽出一个球,一定是红球
B.从袋中抽出一个球后,再从袋中抽出一个球,出现红球或白球的概率一样大
C.从袋中随机抽出2个球,出现都是红球的概率为
D.从袋中抽出2个球,出现颜色不同的球的概率是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com