精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.

(1)当∠AOB=30°时,求弧AB的长;

(2)当DE=8时,求线段EF的长;

(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E的坐标;若不存在,请说明理由.

【答案】;3;存在

【解析】

试题分析:(1)连结BC,

∵A(10,0),∴OA=10,CA=5,

∵∠AOB=30°,

∴∠ACB=2∠AOB=60°,

∴弧AB的长=;……4分

(2)连结OD,

∵OA是⊙C直径,∴∠OBA=90°,

又∵AB=BD,

∴OB是AD的垂直平分线,

∴OD=OA=10,

在Rt△ODE中,

OE=,

∴AE=AO-OE=10-6=4,

由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA,

得△OEF∽△DEA,

,即,∴EF=3;……8分

(3)设OE=x,

①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC中点,即OE=

∴E1(,0);

当∠ECF=∠OAB时,有CE=5-x,AE=10-x,

∴CF∥AB,有CF=,

∵△ECF∽△EAD,

,即,解得:,

∴E2(,0);

②当交点E在点C的右侧时,

∵∠ECF>∠BOA,

∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO,

连结BE,

∵BE为Rt△ADE斜边上的中线,

∴BE=AB=BD,

∴∠BEA=∠BAO,

∴∠BEA=∠ECF,

∴CF∥BE,∴,

∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,

∴△CEF∽△AED,∴,

AD=2BE,∴,

,解得,<0(舍去),

∴E3(,0);

③当交点E在点O的左侧时,

∵∠BOA=∠EOF>∠ECF.

∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO

连结BE,得BE==AB,∠BEA=∠BAO

∴∠ECF=∠BEA,

∴CF∥BE,

,

又∵∠ECF=∠BAO,∠FEC=∠DEA=Rt∠,

∴△CEF∽△AED,∴

而AD=2BE,∴,

,解得,<0(舍去),

∵点E在x轴负半轴上,∴E4(,0),

综上所述:存在以点E、C、F为顶点的三角形与△AOB相似,此时点E坐标为:

,0)、,0)、,0)、,0).(12分)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,BDAC于点DFGAC于点G,∠1=∠2,试证明:∠ADE=∠C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接.下列结论一定正确的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AEBC,FGBC,1=2,D=3+60°,CBD=70°.

(1)求证:ABCD;

(2)求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形(顶点是网格线交点的三角形)的顶点的坐标分别是

(1)请在图中的网格平面内建立平面直角坐标系;

(2)请画出关于轴对称的

(3)请在轴上求作一点,使的周长最小,并写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点(-1y1),(2y2),(3y3)在反比例函数的图象上.下列结论中正确的是( )

A. y1y2y3 B. y1y3y2 C. y3y1y2 D. y2y3y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x,y的方程组

1请直接写出方程的所有正整数解

2若方程组的解满足x+y=0,m的值

3无论实数m取何值,方程x2y+mx+5=0总有一个固定的解,请直接写出这个解?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A42)、Bn4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

1)求一次函数和反比例函数的解析式;

2)求AOB的面积;

3)观察图象,直接写出不等式kx+b0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)计算:

-10 - -31

(﹣×

(-2)2×5+(-2)3÷4

2)比较大小

1.54 2-7

3)用简便方法计算:

查看答案和解析>>

同步练习册答案