分析 根据矩形的性质得出∠A=∠E=∠F=90°,BF=DE,∠ABN=∠FBM=90°,求出∠ABM=∠FBN,AB=DE,根据全等三角形的判定得出△MAB≌△NFB,△MAB≌△MED,求出BM=DM,BM=BN,推出DM=BN,DM∥BN,根据菱形的判定得出即可.
解答 解:∵四边形ABCD、四边形DEBF都是矩形,
∴∠A=∠E=∠F=90°,BF=DE,∠ABN=∠FBM=90°,
∴∠ABM=∠FBN=90°-∠MBN,
∵AB=BF,BF=DE,
∴AB=DE,
在△MAB和△NFB中
$\left\{\begin{array}{l}{∠A=∠F}\\{AB=BF}\\{∠ABM=∠FBN}\end{array}\right.$
∴△MAB≌△NFB(ASA),
∴BM=BN,
在△MAB和△MED中
$\left\{\begin{array}{l}{∠AMB=∠EMD}\\{∠A=∠E}\\{AB=DE}\end{array}\right.$
∴△MAB≌△MED(AAS),
∴BM=DM,
∴DM=BN,
∵四边形ABCD是矩形,
∴DM∥BN,
∴四边形BMDN是菱形.
点评 本题考查了全等三角形的性质和判定,菱形的判定,矩形的性质等知识点,能求出DM=BN和DM∥BN是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0°<α<30° | B. | 30°<α<60° | C. | 60°<α<90° | D. | 45°<α<90° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 主视图 | B. | 左视图 | C. | 俯视图 | D. | 主视图和左视图 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com