精英家教网 > 初中数学 > 题目详情

【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.

1)要使每天获得利润700元,请你帮忙确定售价;

2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.

【答案】113元或15元(214元,最大利润为720

【解析】

解:(1)设每件商品提高x元,

则每件利润为(10+x-8=x+2)元,

每天销售量为(200-20x)件,

依题意,得:

x+2)(200-20x=700

整理得:x2-8x+15=0

解得:x1=3x2=5

把售价定为每件13元或15元能使每天利润达到700元;

答:把售价定为每件13元或15元能使每天利润达到700元.

2)设应将售价定为x元时,才能使得所赚的利润最大为y元,

根据题意得:

y=x-8)(200-

=-20x2+560x-3200

=-20x2-28x-3200

=-20x2-28x+142-3200+20×142

=-20x-142+720

∴x=14时,利润最大y=720

答:应将售价提为14元时,才能使所赚利润最大,最大利润为720元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10.

(1)甲乙两种图书的售价分别为每本多少元?

(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边三角形ABCAB=12,以AB为直径的半圆与BC边交于点D,过点DDFAC,垂足为F,过点FFGAB,垂足为G,连接GD

1)求证:DF与⊙O的位置关系并证明;

2)求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xoy中,点A、B的坐标分别是A(-1,0),B(3,0),将线段AB向上平移2个单位,再向右平移1个单位,得到线段DC,点A、B的对应点分别是D、C,连接AD、BC.

(1)直接写出点C,D的坐标;

(2)求四边形ABCD的面积;

(3)点P为线段BC上任意一点(与点B、C不重合),连接PD,PO.求证:∠CDP+∠BOP=∠OPD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是 类似地,2所示的算筹图我们可以用方程组形式表述为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长为 1,CDAB 于点 DE 为射线 CD 上一点,以BE为边在 BE 左侧作等边△BEF,则DF的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知Aa0),Bb0),C(﹣12),且

1)求ab的值;

2y轴上是否存在一点M,使COM的面积是ABC的面积的一半,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图抛物线 y=ax2+bx﹣ x 轴交于 A(1,0)、B(6,0)两点,D y 轴上一点,连接 DA,延长 DA 交抛物线于点 E.

(1)求此抛物线的解析式;

(2) E 点在第一象限过点 E EFx 轴于点 F,ADO AEF 的面积比为=,求出点 E 的坐标;

(3) D y 轴上的动点 D 点作与 x 轴平行的直线交抛物线于 M、N 两点, 是否存在点 D,使 DA2=DMDN?若存在,请求出点 D 的坐标;若不存在,请说 明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一棵树CD10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?

查看答案和解析>>

同步练习册答案