【题目】如图,抛物线 y=ax2+bx﹣与 x 轴交于 A(1,0)、B(6,0)两点,D 是 y 轴上一点,连接 DA,延长 DA 交抛物线于点 E.
(1)求此抛物线的解析式;
(2)若 E 点在第一象限,过点 E 作 EF⊥x 轴于点 F,△ADO 与△AEF 的面积比为=,求出点 E 的坐标;
(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M、N 两点, 是否存在点 D,使 DA2=DMDN?若存在,请求出点 D 的坐标;若不存在,请说 明理由.
【答案】(1)抛物线的解析式为 y=﹣x2+x﹣;(2)E 点坐标是(4,);(3)D 点坐标为(0,﹣)或(0,3).
【解析】
(1)根据待定系数法,可得函数解析式;
(2)根据相似三角形的判定与性质,可得 AF 的长,根据自变量与函数值的对应关系,可得答案;
(3)根据两点间距离,可得 AD 的长,根据根与系数的关系,可得 x1x2,根据
DA2=DMDN,可得关于 n 的方程,解方程,即可得答案.
(1)将 A(1,0),B(6,0)代入函数解析式,得,
解得,
抛物线的解析式为 y=﹣x2+x﹣;
(2)∵EF⊥x 轴于点 F,
∴∠AFE=90°,
∵∠AOD=∠AFE=90°,∠OAD=∠FAE,
∴△AOD∽△AFE,
∵==,
∵AO=1,
∴AF=3,OF=3+1=4,
当 x=4 时,y=﹣×42+×4﹣=,
∴E 点坐标是(4,);
(3)存在点 D,使 DA2=DMDN,理由如下:
设 D 点坐标为(0,n),
AD2=1+n2,
当 y=n 时,﹣x2+x﹣=n
化简,得﹣3x2+21﹣18﹣4n=0, 设方程的两根为 x1,x2, x1x2=
DM=x1,DN=x2,
DA2=DMDN,即 1+n2=,
化简,得
3n2﹣4n﹣15=0, 解得 n1=,n2=3,
∴D 点坐标为(0,﹣)或(0,3).
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2-2bx+c.
(1)若抛物线的顶点坐标为(2,-3),求b,c的值;
(2)若b+c=0,是否存在实数x,使得相应的y的值为1?请说明理由;
(3)若c=b+2且抛物线在-2≤x≤2上的最小值是-3,求b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 C 为 Rt△ACB 与 Rt△DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD、BE,过点 C 作 CF⊥AD 于点 F,延长 FC 交 BE 于点 G.若 AC=BC=25,CE=15, DC=20,则的值为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面材料:
已知点在数轴上分别表示有理数,两点之间的距离表示为
当两点中有一点在原点时,不妨设点为原点,如图1,
当两点都不在原点时,
(1)如图2,点都在原点的右边,则
(2)如图3,点都在原点的左边,则
(3)如图4,点都在原点的两边,则
综上,数轴上两点的距离
回答下列问题:
(1)数轴上表示-2和5的两点之间的距离是 ;
(2)数轴上表示和-1的两点之间的距离是,如果,那么 ;
(3)拓展:若点表示的数为
①则当为 时,与的值相等.
②当时,整数有 个
③的最小值是
④的最小值是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学老师在一次“探究性学习”课中,设计了如下数表:
2 | 3 | 4 | 5 | … | |
3 | 8 | 15 | 24 | … | |
4 | 6 | 8 | 10 | … | |
5 | 10 | 17 | 26 | … |
由表可知,当时,,,;
当时,,,;
………
(1)当时,________,_________,________.
(2)请你分别观察,,与之间的关系,并分别用含有的代数式表示 ,,.
________,_________,________.
(3)猜想以,,为边的三角形是否为直角三角形,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com