【题目】如图,点 C 为 Rt△ACB 与 Rt△DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD、BE,过点 C 作 CF⊥AD 于点 F,延长 FC 交 BE 于点 G.若 AC=BC=25,CE=15, DC=20,则的值为___________.
【答案】
【解析】
过 E作 EH⊥GF于 H,过 B作 BP⊥GF于 P,依据△EHG∽△BPG,可得=,再根据△DCF∽△CEH,△ACF∽△CBP,即可得到 EH=CF,BP=CF,进 而得出=.
如图,过 E作 EH⊥GF于 H,过 B 作 BP⊥GF于P,则∠EHG=∠BPG=90°,
又∵∠EGH=∠BGP,
∴△EHG∽△BPG,
∴=,
∵CF⊥AD,
∴∠DFC=∠AFC=90°,
∴∠DFC=∠CHF,∠AFC=∠CPB, 又∵∠ACB=∠DCE=90°,
∴∠CDF=∠ECH,∠FAC=∠PCB,
∴△DCF∽△CEH,△ACF∽△CBP,
∴,
∴EH=CF,BP=CF,
∴=,
∴=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来就是 类似地,图2所示的算筹图我们可以用方程组形式表述为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(a,0),B(b,0),C(﹣1,2),且.
(1)求a,b的值;
(2)y轴上是否存在一点M,使△COM的面积是△ABC的面积的一半,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 y=ax2+bx﹣与 x 轴交于 A(1,0)、B(6,0)两点,D 是 y 轴上一点,连接 DA,延长 DA 交抛物线于点 E.
(1)求此抛物线的解析式;
(2)若 E 点在第一象限,过点 E 作 EF⊥x 轴于点 F,△ADO 与△AEF 的面积比为=,求出点 E 的坐标;
(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M、N 两点, 是否存在点 D,使 DA2=DMDN?若存在,请求出点 D 的坐标;若不存在,请说 明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.
(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:
(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;
(3)如图③,若△ABC中,∠ABO=∠ABC,∠ACO=∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为 _.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,BC=20 cm,点P,Q,M,N分别从点A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,四个点的运动均停止.已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2 cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边能构成一个三角形?
(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com