【题目】在矩形ABCD中,点P在AD上,AB=,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图).
(1)当点E与点B重合时,点F恰好与点C重合(如图),则PC的长为 ;
(2)将直角尺从如图中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,从开始到停止,线段EF的中点所经过的路径(线段)长为 .
【答案】(1)2;(2)
【解析】
(1)如图2,先利用勾股定理计算出PB=2,再证明△APB∽△DCP,然后利用相似比可计算出PC;
(2)设线段EF的中点为O,连接OP,OB,如图1,利用直角三角形斜边上的中线性质得OP=OB=EF,则利用线段垂直平分线定理的逆定理可得O点在线段BP的垂直平分线上,再确定旋转开始和停止时EF的中点位置,然后根据三角形中位线性质确定线段EF的中点所经过的路径(线段)长.
(1)如图2,
在矩形ABCD中,∠A=∠D=90°,
∵AP=1,AB=,
∴PB==2,
∵∠ABP+∠APB=90°,∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
∴AP:CD=PB:CP,即1:=2:PC,
∴PC=2,
(2)设线段EF的中点为O,连接OP,OB,如图1,
在Rt△EPF中,OP=EF,
在Rt△EBF中,OB=EF,
∴OP=OB,
∴O点在线段BP的垂直平分线上,
如图2,当点E与点B重合时,点F与点C重合时,EF的中点为BC的中点O,
当点E与点,A重合时,EF的中点为PB的中点O,
∴OO′为△PBC的中位线,
∴OO′=PC=,
∴线段EF的中点经过的路线长为.
科目:初中数学 来源: 题型:
【题目】给出下列命题:
①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;
②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;
③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.
其中,正确命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化.
(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)
(2)求出当a=10,b=12时的绿化面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在完成第10章的学习后,遇到了一些问题,请你帮助他.
(1)图1中,当,试说明.
(2)图2中,若,则吗?请说明理由.
(3)图3中,,若,,,,则______(直接写出结果,用含x,y,z的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:AB⊥BC,DC⊥BC,AB=4,CD=2,BC=8,P是BC上的一个动点,设BP=x.
(1)用关于x的代数式表示PA+PD;
(2)求出PA+PD的最小值;
(3)仿(2)的做法,构造图形,求的最小值;
(4)直接写出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.
(1)若∠B=35°,∠ACB=85°,求∠E得度数.
(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是( )
A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若∣x+2y-5∣+∣2x-y∣=0,试分别求出1秒钟后,A、B两点的坐标.
(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?
请写出你的结论并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com