分析 (1)令y=0可求得x=-5,从而可求得点A的坐标,令x=0得y=5m,由OA=OB可知点B的纵坐标为5,从而可求得m的值;
(2)依据AAS证明△AMO≌△ONB,由全等三角形的性质可知ON=AM,OM=BN,最后由MN=AM+BN可求得MN的长;
(3)过点E作EG⊥y轴于G点,先证明△ABO≌△EGB,从而得到BG=10,然后证明△BFP≌△GEP,从而得到BP=GP=$\frac{1}{2}$BG.
解答 解:(1)由题意知:A(-5,0),B(0,5m)
∵OA=OB,
∴5m=5,即m=1.
∴L的解析式y=x+5.
(2)如图②中,![]()
∵AM⊥OQ,BN⊥OQ
∴∠AMO=∠BNO=90°
∴∠AOM+∠MAO=90°
∵∠AOM+BON=90°
∴∠MAO=∠NOB
在△AMO和△ONB中,
$\left\{\begin{array}{l}{∠AMO=∠BNO}\\{∠MAO=∠NOB}\\{OA=OB}\end{array}\right.$,
∴△AMO≌△ONB.
∴ON=AM,OM=BN.
∵AM=4,BN=3,
∴MN=AM+BN=7.
(3)PB的长为定值.
理由:如图③所示:过点E作EG⊥y轴于G点.![]()
∵△AEB为等腰直角三角形,
∴AB=EB,∠ABO+∠EBG=90°.
∵EG⊥BG,
∴∠GEB+∠EBG=90°.
∴∠ABO=∠GEB.
在△ABO和△EGB中,
$\left\{\begin{array}{l}{∠EGB=∠BOA}\\{∠ABO=∠GEB}\\{AB=EB}\end{array}\right.$,
∴△ABO≌△EGB.
∴BG=AO=10,OB=EG
∵△OBF为等腰直角三角形,
∴OB=BF
∴BF=EG.
在△BFP和△GEP中,
$\left\{\begin{array}{l}{∠EGP=∠FBP}\\{∠EPG=∠FPB}\\{EG=BF}\end{array}\right.$,
∴△BFP≌△GEP.
∴BP=GP=$\frac{1}{2}$BG=$\frac{5}{2}$.
∴PB的长为定值.
点评 本题主要考查的是一次函数的综合应用,全等三角形的性质和判定、等腰直角三角形的性质,熟练掌握全等三角形的判定方法是解题的关键学会添加常用辅助线,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com