【题目】长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,= 。
【答案】(1)a=3,b=1;
(2)当t=10秒或85秒时,两灯的光束互相平行;
(3)∠BAC:∠BCD=3:2
【解析】分析:
(1)根据|a-3b|+=0,可得a-3b=0,且a+b-4=0,进而得出a、b的值;
(2)设A灯转动x秒,两灯的光束互相平行,分两种情况进行讨论:①在灯A射线转到AN之前,②在灯A射线转到AN之后,分别求得t的值即可;
(3)设灯A射线转动时间为t秒,根据∠BAC=45°-(180°-3t)=3t-135°,∠BCD=90°-∠BCA=90°-(180°-2t)=2t-90°,可得∠BAC与∠BCD的数量关系.
本题解析:(1)∵a、b满足|a﹣3b|+(a+b﹣4)2=0,
∴a﹣3b=0,且a+b﹣4=0,
∴a=3,b=1;
(2)设A灯转动x秒,两灯的光束互相平行,
①在灯A射线转到AN之前,
3t=(20+t)×1 解得t=10;
②在灯A射线转到AN之后,
3t﹣3×60+(20+t)×1=180, 解得t=85
综上所述,当t=10秒或85秒时,两灯的光束互相平行;
(3)(3)设灯A射线转动时间为t秒,
∵∠CAN=3t,
∴∠BAC=(3t)=3t,
又∵PQ∥MN,
∴∠BCA=∠CBD+∠CAN=t+3t=2t,
而∠ACD=,
∴∠BCD=∠BCA=(2t)=2t,
∴ ,
科目:初中数学 来源: 题型:
【题目】如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,下列结论:①∠ACD=∠B;②CH=CE=EF;③AC=AF;④CH=HD.其中正确的结论为( )
A.①②④ B.①②③ C. ②③ D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线相交于点E,与x轴相交于点D,点P在直线上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.
(1)如图①所示,若抛物线顶点的纵坐标为,求抛物线的解析式;
(2)求A、B两点的坐标;
(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)请画出平移后的△DEF,并求△DEF的面积=
(2)若连接AD、CF,则这两条线段之间的关系是_________________;
(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com