【题目】如图,在中,,点,分别是,上的点,,相交于点,.
(1)如图1,求证:;
(2)作交的延长线于点,.
①如图2,求证:;
②如图3,过点作于点,若,,直接写出的长为______.
【答案】(1)证明见解析;(2)①证明见解析;②4.
【解析】
(1)根据三角形的外角性质得到∠APE=∠ABP+∠BAD,得到∠APE=∠ABC,根据等腰三角形的性质得到∠C=∠ABC,等量代换证明结论;
(2)①过点作于点,于点,证明,得到EH=EG,根据角平分线的判定定理得到∠ADF=∠CDF,根据平行线的性质、等腰三角形的判定定理证明;
②根据全等三角形的性质得到PH=GC,DH=DG,结合图形列式计算得到答案.
(1)证明:∵,
∴,
∵,
∴,
∴;
(2))①证明:过点作于点,于点,
∵,,,
∴,
∴,
∴平分,
即,
∵,
∴,
∴
∴;
②解:如图,作EH⊥AD于H,
由(2)①可知,△EHP≌△EGC,
∴PH=GC,
在△DEH和△DEG中,
,
∴△DEH≌△DEG(AAS)
∴DH=DG,
∴DG=DH=DP+PH=1+GC,
∴1+GC+GC=7,
解得,GC=3,
∴DG=DC-GC=7-3=4,
故答案为:4.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D在同一直线上,AF=CD,∠AFE=∠BCD.
试说明:
(1)△ABC≌△DEF;
(2)BF∥EC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.
(1)求证:AE平分∠DAC;
(2)若AB=4,∠ABE=60°,求出图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学社团小组想利用所学的知识了解某广告牌的高度(图中GH的长),经测量知CD=2m,在B处测得点D的仰角为60°,在A处测得点C的仰角为30°,AB=10m,且A、B、H三点在一条直线上,请根据以上数据计算GH的长(=1.73,要求结果精确得到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有( )
A. 4对B. 3对C. 2对D. 5对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的部分图像如图所示,图像过点,对称轴为直线,下列结论:(1);(2);(3)若点、点、点在该函数图像上,则;(4)若方程的两根为和,且,则.其中正确结论的序号是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点M在这条抛物线上,点P在y轴上,如果四边形ABMP是平行四边形,则点M的坐标为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com