精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.

【答案】(1)y=x+3;(2)M(﹣1,2);(3)P(﹣1,﹣2)或(﹣1,4)或(﹣1, 或(﹣1,).

【解析】(1)依题意得:,解得:,∴抛物线解析式为

∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;

(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.

把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);

(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴=18,====

①若点B为直角顶点,则即:解之得:t=﹣2;

②若点C为直角顶点,则即:解之得:t=4

③若点P为直角顶点,则即:解之得:

综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1, 或(﹣1,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCDDCE80°,则BEF=( )

A. 120° B. 110° C. 100° D. 80°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.

(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.

①点B的坐标为( ),BK的长是 ,CK的长是

②求点F的坐标;

③请直接写出抛物线的函数表达式;

(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.

温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是(  )
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2axa50,若该方程的一个根为1,求a的值及该方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简与分解因式
(1)化简:(
(2)分解因式:(x﹣1)(x﹣3)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC和△DBE均为等腰直角三角形.
(1)求证:AD=CE;
(2)求证:AD和CE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,

(1)图中除直角外,还有相等的角吗?请写出两对:①;②
(2)如果∠AOD=40°,则①∠BOC=;②OP是∠BOC的平分线,所以∠COP=
③求∠BOF的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y2被抛物线yx23x+2截得的线段长为_____

查看答案和解析>>

同步练习册答案