【题目】如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,
(1)图中除直角外,还有相等的角吗?请写出两对:①;② .
(2)如果∠AOD=40°,则①∠BOC=;②OP是∠BOC的平分线,所以∠COP=;
③求∠BOF的度数 .
【答案】
(1)∠AOD=∠BOC;∠BOP=∠COP
(2)40°;20°;50°
【解析】由题意可知,∠AOD与∠BOC是对顶角,所以二者相等.因为OP是∠BOC的角平分线,所以∠BOP=∠COP.由第一问得到的答案,)如果∠AOD=40°,所以∠BOC=40°.OP是∠BOC的平分线,所以∠COP=20°.因为OF⊥CD,所以∠COF=90°,所以∠BOF=90°-40°=50°.
【考点精析】利用角的平分线和角的运算对题目进行判断即可得到答案,需要熟知从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;角之间可以进行加减运算;一个角可以用其他角的和或差来表示.
科目:初中数学 来源: 题型:
【题目】下列四种说法:
①过一点有且只有一条直线与已知直线平行;
②在同一平面内,两条不相交的线段是平行线段;
③相等的角是对顶角;
④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.
其中,错误的是__________________________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN上.
(1)图中点B的对称点是 , 点C的对称点是;
(2)写出图中相等的一对线段是 , 相等的一对角是;
(3)写出图中全等的一对三角形是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com