【题目】已知抛物线与轴、轴分别相交于点A(-1,0)和B(0,3),其顶点为D。
(1)求这条抛物线的解析式;
(2)画出此抛物线;
(3)若抛物线与轴的另一个交点为E,求△ODE的面积;
(4)抛物线的对称轴上是否存在点P使得△PAB的周长最短。若存在请求出点P的坐标,若不存在,说明理由.
【答案】(1)y=﹣x2+2x+3 ;(2)如图所示,见解析;(3)S△ODE=6;(4)存在,点P坐标(1,2).
【解析】
(1)将点A、B的坐标代入求出b,c即可;
(2)描点、画图即可;
(3)令y=0求出x的值,可得E点坐标,把抛物线一般式化成顶点式可得顶点D的坐标,然后根据三角形面积公式计算即可;
(4)连接BE交抛物线的对称轴x=1于点P,此时PA+PB的值最小,即△PAB的周长最短,求出直线BE的解析式,然后即可解决问题.
解:(1)根据题意得,
解得,
∴抛物线解析式为y=﹣x2+2x+3;
(2)如图所示:
(3)当y=0时,即﹣x2+2x+3=0,
解得:x1=﹣1,x2=3,
∴E(3,0),
∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2 + 4,
∴顶点坐标D(1,4),
∴S△ODE=×3×4=6;
(4)连接BE交抛物线的对称轴x=1于点P,如图,此时PA+PB的值最小,即△PAB的周长最短,
设直线BE的解析式为y=kx+b(k≠0),
则,解得:,
∴直线BE的解析式为:y=﹣x+3,
当x=1时,y=﹣x+3=2,
∴点P坐标为(1,2).
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为16米(如图所示),设这个花草园垂直于墙的一边长为x米.
(1)若花草园的面积为100平方米,求x;
(2)若平行于墙的一边长不小于10米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形 ABCD 中,AD∥BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE
(1)试证明△AEF∽△BEC;
(2)如图,过 C 点作 CH⊥AD 于 H,试探究线段 DH 与 BF 的数量关系,并说明理由;
(3)若 AD=1,CD=5,试求出 BE 的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的大致图象如图所示,关于该二次函数,下列说法错误的是( )
A.函数有最小值B.图象对称轴是直线x=
C.当x<,y随x的增大而减小D.当-1<x<2时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,校园空地上有一面墙,长度为4米,为了创建“美丽校园”,学校决定借用这面墙和20米的围栏围成一个矩形花园,设长为米,矩形花园的面积为平方米.
(1)如图1,若所围成的矩形花园边的长不得超出这面墙,求关于的函数关系式,并写出自变量的取值范围;
(2)在(1)的条件下,当为何值时,矩形花园的面积最大,最大值是多少?
(3)如图2,若围成的矩形花园的边的长可超出这面墙,求围成的矩形的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是直线。给出下列结论:①;②;③方程有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为,其中正确的结论有。其中正确的有_____________。(只需填写序号即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】共享单车逐渐成为市民喜爱的“绿色出行” 方式之一,今年国庆假期某一天,济川中学初三数学社团的同学们随机调查了一个社区,将这天部分出行市民使用共享单车的数据整理成如下统计表.
使用次数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 11 | 15 | 23 | 28 | 18 | 5 |
(1) 这天部分出行市民使用共享单车次数的中位数是__________,众数是__________
(2) 这天部分出行市民平均每人使用共享单车多少次?
(3) 若该社区这天有1500人出行,请你估计这天使用共享单车次数在3次以上(含3 次)的市民有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.
(1)求证:∠BFC=∠ABC.
(2)若⊙O的半径为5,CF=6,求AF长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com