精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=x2+mxx轴的负半轴于点A.点By轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为_____

【答案】3

【解析】解方程x2+mx=0A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.

y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),

∵点A关于点B的对称点为A′,点A′的横坐标为1,

∴点A的坐标为(﹣1,0),

∴抛物线解析式为y=x2+x,

x=1时,y=x2+x=2,则A′(1,2),

y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),

A′C的长为1﹣(﹣2)=3,

故答案为:3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,则正方形铁片连续旋转2017次后,点P的坐标为____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x

频数(人数)

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

请结合图表完成下列各题:

(1)求表中a的值;

(2)请把频数分布直方图补充完整;

(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知是等边三角形.

1)将绕点逆时针旋转角);得到所在直线相交于点.

①如图,当时,是否全等? (填“是”或“否”), 度;

②当旋转到如图所在位置时,求的度数;

2)如图,在上分别截取点,使,连接,将绕点逆时针旋转角(),得到所在直线相交于点,请利用图探索的度数,直接写出结果,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点AAD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1个单位的速度运动,同时点Q从点C出发沿射线CB方向以每秒2个单位的速度运动,在线段QC上取点E,使得QE=2,连结PE,设点P的运动时间为t秒.

(1)若PE⊥BC,求BQ的长;

(2)请问是否存在t的值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).

设这种双肩包每天的销售利润为w元.

(1)求w与x之间的函数解析式;

(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?

(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某二次函数的图象,将其向左平移个单位后的图象的函数解析式为,则下列结论中正确的有(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过三点.

求抛物线的解析式;

如图,在抛物线的对称轴上是否存在点,使得四边形的周长最小?若存在,求出四边形周长的最小值;若不存在,请说明理由.

如图,点是线段上一动点,连接,在线段上是否存在这样的点,使为等腰三角形且为直角三角形?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣51),B(﹣44),C(﹣1,﹣1).

1)在图1中画出△ABC关于y轴对称的图形△A1B1C1

2)直接写出△A1B1C1的面积;

3)在图2y轴上找出点P,使PB+PC的值最小(保留作图痕迹).

查看答案和解析>>

同步练习册答案