精英家教网 > 初中数学 > 题目详情

【题目】已知点P为抛物线y=x2+2x﹣3在第一象限内的一个动点,且P关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为(  )

A. (﹣1,﹣1) B. (﹣2,﹣ C. (﹣,﹣2﹣1) D. (﹣,﹣2

【答案】D

【解析】分析:

设点P的坐标为(x,y),则点P′的坐标为(-x,-y),把两个点的坐标代入y=x2+2x﹣3中列出关于x、y的方程组,解方程组结合点P在第一象限即可求得点P的坐标,由此即可得到点P′的坐标了.

详解

P点的坐标为(x,y),

∵点P′与点P关于原点对称,

∴点P′的坐标为(﹣x,﹣y),

把点P(x,y)和点P′(﹣x,﹣y)代入y=x2+2x﹣3得:

,解得:

∵点P在第一象限,

∴点P的坐标为

∴点P′的坐标为.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进的乙种玩具的件数相同.

(1)求每件甲种、乙种玩具的进价分别是多少元?

(2)商场计划购进甲、乙两种玩具共48件,购进这两种玩具的总资金超过960元但不超过1000元,求商场有哪几种具体的进货方案?最多可以购进乙种玩具多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的对称轴为x=2,且经过点(1,4)和(5,0),试求该抛物线的表达式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形一腰上的高与另一腰的夹角为40°,则等腰三角形底角的度数是________________°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑其它因素),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.

(1)求y关于x的函数解析式;

(2)足球的飞行高度能否达到4.88 m?请说明理由;

(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44 m(如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要在几s内到球门的左边框?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AD是它的角平分线.

1)如图1,求证:SABDSACDABACBDCD

2)如图2EAB上的点,连接ED,若BD3BECD2AE2CD,求证:BED是等腰三角形;

3)在图1中,若3BAC2C,∠ADB>∠B>∠BAD,直接写出∠BAC的取值范围   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.

(1)yx的函数表达式;

(2)若改造后观花道的面积为13m2,求x的值;

(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于点,与轴交于点,点坐标为

求该抛物线的解析式;

抛物线的顶点为,在轴上找一点,使最小,并求出点的坐标;

是线段上的动点,过点,交于点,连接.当的面积最大时,求点的坐标;

若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.问:是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是(  )

A. (,0)B. (,0)C. (,0)D. (,0)

查看答案和解析>>

同步练习册答案