【题目】如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长,交AD的延长线于F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CMCF.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OB,只要证明∠OBE=90°即可求解;
(2)连接MB,易证∠CMB=∠CBF,则可以得到△CMB∽△CBF,根据相似三角形对应边的比相等即可得证.
试题解析:(1)连结OB,
∵△ABC和△BDE都是等边三角形,
∴∠ABC=∠EBD=60°,
∴∠CBE=60°,∠OBC=30°,
∴∠OBE=90°,
∴BE是⊙O的切线;
(2)连结MB,则∠CMB=180°-∠A=120°
∵∠CBF=60°+60°=120°
∴∠CMB=∠CBF
∵∠BCM=∠FCB
∴△CMB∽△CBF
∴,即CB2=CMCF,
∵AC=CB
∴AC2=CMCF.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…则正方形OB2015B2016C2016的顶点B2016的坐标是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,AB∥CD,要使ABCD是平行四边形,需要补充的一个条件( )
A. AD=BCB. AB=CDC. ∠DAB=∠ABCD. ∠ABC=∠BCD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果∠A和∠B互为余角,∠B和∠C互为补角,∠A与∠C的和等于1200,那么这三个角分别是()
A. 15°, 75°, 105° B. 20°, 70°, 90°
C. 300,600,900 D. 700,200,1000
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某射击队要从甲,乙,丙,丁四名队员中选出一名队员代表射击队参加射击比赛,各队员的平时成绩的平均数及方差如表所示:
甲 | 乙 | 丙 | 丁 | |
平均数(环) | 9.8 | 9.3 | 9.6 | 9.8 |
方差(环2) | 3.3 | 3.3 | 3.5 | 6.1 |
根据表中数据,要从这四个队员中选择一个成绩好且发挥稳定的队员去参赛,那么应该选的队员是( )
A. 甲B. 乙C. 丙D. 丁
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com