精英家教网 > 初中数学 > 题目详情
17.如图,点D是等边△ABC边BC上一点,连接AD,作∠ADE=60°,交AC边于点E.若AB=3,BD=1,求CE的长.

分析 根据等边△ABC,可得∠B=∠C=60°,再根据有两组角对应相等的两个三角形相似,判定△ABD∽△DCE,得到$\frac{AB}{DC}$=$\frac{BD}{CE}$,进而求出CE.

解答 解:∵△ABC是等边三角形,
∴∠B=∠C=60°,
∵∠ADE=60°,
∴∠BAD+∠ADB=120°=∠CDE+∠ADB,
∴∠BAD=∠CDE,
∴△ABD∽△DCE,
∴$\frac{AB}{DC}$=$\frac{BD}{CE}$,即$\frac{3}{2}$=$\frac{1}{CE}$,
∴CE=$\frac{2}{3}$.

点评 本题主要考查了等边三角形的性质、相似三角形的判定及其性质的应用,解决问题的关键是判定相似三角形,依据相似三角形的对应边成比例列式计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是(  )
A.a=20
B.b=4
C.若工人甲一天获得薪金180元,则他共生产50件
D.若工人乙一天生产m(件),则他获得薪金4m元

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.将抛物线 y=x2的图象向上平移2个单位,再向左平移1个单位,则平移后的抛物线的解析式为y=(x+1)2+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下面材料:
实际问题:如图(1),一圆柱的底面半径为5厘米,BC是底面直径,高AB为5厘米,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线.

解决方案:
路线1:侧面展开图中的线段AC,如图(2)所示,
设路线l的长度为l1:则l12=AC2=AB2+BC2=52+(5π)2=25+25π2
路线2:高线AB+底面直径BC,如图(1)所示.
设路线2的长度为l2:则l22=(AB+BC)2=(5+10)2=225.
为比较l1,l2的大小,我们采用“作差法”:
∵l12-l22=25(π2-8)>0∴l12>l22∴l1>l2
小明认为应选择路线2较短.
(1)问题类比:
小亮对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1厘米,高AB为5厘米.”.请你用上述方法帮小亮比较出l1与l2的大小:
(2)问题拓展:
请你帮他们继续研究:在一般情况下,当圆柱的底面半径为r厘米时,高为h厘米,蚂蚁从A点出发沿圆柱表面爬行到点C,当$\frac{r}{h}$满足什么条件时,选择路线2最短?请说明理由.
(3)问题解决:
如图(3)为2个相同的圆柱紧密排列在一起,高为5厘米,当蚂蚁从点A出发沿圆柱表面爬行到C点的两条路线长度相等时,求圆柱的底面半径r.(注:按上面小明所设计的两条路线方式).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在?ABCD中,点E,F分别是AB,CD边上的两点,且BE=DF,连接CE,AF,分别交BD于点G,H,连接AG,CH.
(1)若BC=6,AB=8,∠CBA=60°,求?ABCD的面积.
(2)若AB=AD,求证:四边形AGCH是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在梯形ABCD中,AD∥BC,AE=DE,AC与BD相交于点E,∠ADB=60°,且BE:ED=3:1,BD=12,求梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,四边形ABDC中,∠B=∠D=90°,BC=AB,以AB为直径的⊙O交BC于E.
(1)求证:BE=CD;
(2)若BD=6,CE=2,求tan∠BCO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.若x2-2x+y2+6y+10=0,求x,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,Rt△ABC中,AB=10,BC=6,E是AC上一点,AE=5,ED⊥AB,垂足为D,则AD的长为4.

查看答案和解析>>

同步练习册答案