精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.求证:AC平分∠DAB.

【答案】证明:连结OC,如图,

∵CD为⊙O的切线,

∴OC⊥AD,

∵AD⊥CD,

∴OC∥AD,

∴∠1=∠2,

∵OC=OA,

∴∠1=∠3,

∴∠2=∠3,

∴AC平分∠DAB.


【解析】连结OC,根据切线的性质得OC⊥AD,然后根据同一平面内垂直于同一直线的两条直线互相平行得出OC∥AD,故∠1=∠2,再根据等边对等角得出∠1=∠3,所以∠2=∠3。
【考点精析】掌握平行线的判定与性质和切线的性质定理是解答本题的根本,需要知道由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一块空白地如图ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.

(1)求证:四边形BECD是平行四边形;
(2)若∠E=60°,AC=4 ,求菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为等边三角形ABC内的一点,且P到三个顶点ABC的距离分别为3,4,5,则ABC的面积为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+5与坐标轴的交点B,C.已知D(0,3).

(1)求抛物线的解析式;
(2)M,N分别是BC,x轴上的动点,求△DMN周长最小时点M,N的坐标,并写出周长的最小值;
(3)连接BD,设M是平面上一点,将△BOD绕点M顺时针旋转90°后得到△B1O1D1 , 点B,O,D的对应点分别是B1 , O1 , D1 , 若△B1O1D1的两个顶点恰好落在抛物线上,请直接写出点O1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a、b、c满足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)
(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车司机老姚某天上午营运全是在东西走向的解放路上进行.如 果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:

+8+6,﹣10,﹣3+6,﹣5,﹣2,﹣7+4+8,﹣9,﹣12

(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?

(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面 还是西面?

(3)若汽车耗油量为0.075L/km,这天上午老姚的出租车耗油多少L

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)判断下列未知数的值是不是方程2x2+x-1=0的根.

x1=-1x2=1x3=.

2)已知m是方程x2-x-2=0的一个根,求代数式m2-m的值.

查看答案和解析>>

同步练习册答案