【题目】某花卉基地出售两种盆栽花卉:太阳花的价格为6元/盆,绣球花的价格为10元/盆.若一次性购买绣球花超过20盆时,超过20盆的部分绣球花打8折.
(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数表达式.
(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花的数量不超过绣球花数量的一半,则两种花卉各买多少盆时,总费用最少?最少总费用为多少元?
【答案】(1)y=6x;y=(2)当x=60,即购买绣球花60盆,购买太阳花30盆时,总费用最少,最少总费用为700元
【解析】试题分析:(1)、太阳花的价格=6×数量;绣球花的价格分x≤20和x>20两种情况分别进行计算,得出函数解析式;(2)、首先设太阳花的数量是m盆,则绣球花的数量是(90-m)盆,购买两种花的总费用是w元,根据题意求出m的取值范围,然后得出w与m的函数关系式,然后根据一次函数的增减性得出最小值.
试题解析:(1)、y太阳花=6x;
①y绣球花=10x(x≤20);
②y绣球花=10×20+10×0.8×(x-20)=200+8x-160=8x+40(x>20)
(2)、根据题意, 设太阳花的数量是m盆,则绣球花的数量是(90-m)盆,购买两种花的总费用是w元,
∴m≤(90-m) 则m≤30,
则w=6m+[8(90-m)+40]=760-2m
∵-2<0 ∴w随着m的增大而减小, ∴当m=30时,
w最小=760-2×30=700(元),
即太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.
科目:初中数学 来源: 题型:
【题目】某校一块空地被荒废,如图,为了绿化环境,学校打算利用这块空地种植花草,已知AB⊥BC,CD⊥BC,AB=CD=m,BC=3m,试求这块空地的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )
A. 3.12×106 B. 3.12×105 C. 31.2×105 D. 0.312×107
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,MA1∥NA2 , 则∠A1+∠A2= 度.
如图2,MA1∥NA3 , 则∠A1+∠A2+∠A3= 度.
如图3,MA1∥NA4 , 则∠A1+∠A2+∠A3+∠A4= 度.
如图4,MA1∥NA5 , 则∠A1+∠A2+∠A3+∠A4+∠A5= 度.从上述结论中你发现了什么规律?
如图5,MA1∥NAn , 则∠A1+∠A2+∠A3+…+∠An= 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式,并写出y<0时,对应x的取值范围;
(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.
①当BC=1时,直接写出矩形ABCD的周长;
②设动点A的坐标为(a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值?如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com