精英家教网 > 初中数学 > 题目详情

【题目】对于二次函数y=﹣ +x﹣4,下列说法正确的是(
A.当x>0时,y随x的增大而增大
B.当x=2时,y有最大值﹣3
C.图象的顶点坐标为(﹣2,﹣7)
D.图象与x轴有两个交点

【答案】B
【解析】解:∵二次函数y=﹣ +x﹣4可化为y=﹣ (x﹣2)2﹣3,又∵a=﹣ <0
∴当x=2时,二次函数y=﹣ x2+x﹣4的最大值为﹣3.
故选B.
【考点精析】根据题目的已知条件,利用二次函数的图象和二次函数的性质的相关知识可以得到问题的答案,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣ x2+bx+c的图象经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工程队修建一条长1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.
(1)求这个工程队原计划每天修建道路多少米?
(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y= (x>0)相交于点P(1,m ).

(1)求k的值;
(2)若点Q与点P关于直线y=x成轴对称,则点Q的坐标是Q();
(3)若过P、Q二点的抛物线与y轴的交点为N(0, ),求该抛物线的函数解析式,并求出抛物线的对称轴方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.
则下列结论:
①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=112.5°
④BC+FG=1.5
其中正确的结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B
(1)求m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;
(3)当 <m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.

(1)补充完成下面的成绩统计分析表:

组别

平均分

中位数

方差

合格率

优秀率

甲组

6.7

3.41

90%

20%

乙组

7.5

1.69

80%

10%

(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)

(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.

查看答案和解析>>

同步练习册答案