【题目】如图,AC与BD相交于点O,AB∥CD,AB=CD,则图中的全等三角形共有( )
A. 1对B. 2对C. 3对D. 4对
【答案】D
【解析】
图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB≌△COD.首先证明△AOB≌△COD(ASA),再利用全等三角形的性质和判定一一证明即可.
图中全等三角形有4对,是△ADB≌△CBD,△ABC≌△CDA,△AOD≌△COB,△AOB≌△COD,
理由是:∵AB∥CD,
∴∠ABD=∠CDB,∠BAO=∠DCO,
∵AB=CD,
∴△AOB≌△COD(ASA),
∴OA=OC,OB=OD,
∵∠AOD=∠COD,
∴△AOD≌△COB(SAS),
∴AD=BC,
∵AD=BC,CD=AB,AC=CA,
∴△ADC≌△CBA(SSS),
∵AD=BC,AB=CD,DB=BD,
∴△ADB≌△CBD(SSS),
故选:D.
科目:初中数学 来源: 题型:
【题目】根据下列条件不能判断△ABC是直角三角形的是( )
A.∠B=50° ,∠C=40°
B.∠B=∠C=45°
C.∠A,∠B,∠C的度数比为5:3:2
D.∠A-∠B=90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=60°,BC=2,CD是△ABC的一条高线.若E,F分别是CD和BC上的动点,则BE+EF的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】港珠澳大桥是世界最长的跨海大桥,连接香港大屿山、澳门半岛和广东省珠海市,其中珠海站到香港站全长约55千米,2018年10月24日上午9时正式通车.一辆观光巴士自珠海站出发,25分钟后,一辆小汽车从同一地点出发,结果同时到达香港站.已知小汽车的速度是观光巴士的1.6倍,求观光巴士的速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知点A、点B是直线上的两点,AB =12厘米,点C在线段AB上,且AC=8厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发,在直线上运动,则经过 秒时线段PQ的长为5厘米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个小组同时从山脚开始攀登一座600m高的山,第一小组的攀登速度(即攀登高度与攀登时间之比)是第二小组的1.2倍,并比第二小组早20min到达山顶.
(1)第二小组的攀登速度是多少?
(2)如果山高为hm,第一小组的攀登速度是第二小组的k(k>1)倍,并比第二小组早tmin到达山顶,则第一小组的攀登速度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:
①从1月到4月,手机销售总额连续下降
②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降
③音乐手机4月份的销售额比3月份有所下降
④今年1-4月中,音乐手机销售额最低的是3月
其中正确的结论是________(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”
(1)举一个具体的例子来判断上述结论是否成立;
(2)若和互为相反数,且x+5的平方根是它本身,求x+y的立方根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB= 度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com