【题目】我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 与x轴、y轴分别交于A,B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6
B.8
C.10
D.12
【答案】A
【解析】解:∵直线l:y=kx+4 与x轴、y轴分别交于A、B,
∴B(0,4 ),
∴OB=4 ,
在RT△AOB中,∠OAB=30°,
∴OA= OB= × =12,
∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,
∴PM= PA,
设P(x,0),
∴PA=12﹣x,
∴⊙P的半径PM= PA=6﹣ x,
∵x为整数,PM为整数,
∴x可以取0,2,4,6,8,10,6个数,
∴使得⊙P成为整圆的点P个数是6.
故答案为:A.
根据直线AB的解析式求得OB的长,进而就可求得OA的长,根据切线的性质求得PM⊥AB,根据∠OAB=30°,求得PM与PA的数量关系, 然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.
科目:初中数学 来源: 题型:
【题目】如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中: ①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0.
正确的个数是( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:
(1)如图1,已知点A,点B,点C,直线l及l上一点M,请你按照下列要求画出图形.
①画射线BM;
②画线段AC,并取线段AC的中点N;
③请在直线l上确定一点O,使点O到点A与点B的距离之和(OA+OB)最小;
(2)有5个大小一样的正方形制成如图2所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,(只需添加一个符合要求的正方形即可,并用阴影表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,,分别平分的外角,内角,外角.以下结论:①;②;③;④平分;⑤.其中正确的结论有______________.(把正确结论序号填写在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OBC是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC= ,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB1=OC,得到△OB1C1 , 将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的m倍,使OB2=OC1 , 得到△OB2C2 , …,如此继续下去,得到△OB2017C2017 , 则m的值和点C2017的坐标是( )
A.2,(﹣22017 , 22017× )
B.2,(﹣22018 , 0)
C. , (﹣22017 , 22017× )
D. , (﹣22018 , 0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )
A.12
B.16
C.18
D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是( )
A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将三角形ABC向左平移至点B与原点重合,得三角形A′OC′.
(1)直接写出三角形ABC的三个顶点的坐标A B C ;
(2)画出三角形A′OC′;
(3)求三角形ABC的面积;
(4)直接与出A′C′与y轴交点的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市少年宫准备组织市区部分学校的中小学生到本市A,B,C,D,E五个旅游景区“一日游”,每名学生只能在五个景区中任选一个,为估算到各景区“一日游”的学生人数,少年宫随机抽取这些学校的部分学生,进行了“五个景区你最想去那里”的问卷调查,并把统计结果绘制成如图所示的统计图.
(1)求参加问卷调查的学生数,并将条形统计图补充完整;
(2)若参加“一日游”的学生为1000人,请估计到C景区“一日游”的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com