【题目】某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?
【答案】(1)甲、乙两种材料每千克分别是15、25元
(2)生产方案有3种:第一种:A产品20件,B产品30件
第二种:A产品21件,B产品29件
第三种:A产品22件,B产品28件
【解析】
(1)首先根据题意设甲、乙两种材料每千克分别是x,y元,根据题意列方程求解即可;
(2)首先根据题意设A两种产品分别为m件,根据题意列出不等式求解正整数解即可.
(1)解:设甲、乙两种材料每千克分别是x,y元
根据题意可得:
解得
(2)设A两种产品分别为m件,则B中产品为
根据题意可得:
解得: 即:
故m的取值为:20、21、22
所以可得生产方案有3种:第一种:A产品20件,B产品30件
第二种:A产品21件,B产品29件
第三种:A产品22件,B产品28件
科目:初中数学 来源: 题型:
【题目】我们学过二次函数的图象的平移,如:将二次函数的图象向左平移2个单位,再向下平移4个单位,所图象的函数表达式是.类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:
(1)将的图象向右平移1个单位,所得图象的函数表达式为_______,再向上平移1个单位,所得图象的函数表达式为_________;
(2)函数的图象可由的图象向____平移____个单位得到; 的图象可由哪个反比例函数的图象经过怎样的变换得到?
(3)一般地,函数(,且)的图象可由哪个反比例函数的图象经过和怎样的变换得到?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲汽车出租公司按每100千米150元收取租车费:乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设用车里程为x千米租用甲、乙两家公司的汽车费用分别为元、元
分别求出、与x之间的函数关系式;
判断x在什么范围内,租用乙公司的汽车费用比租用甲公司的汽车费用少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】母亲节过后,永川区某校在本校学生中做了一次抽样调查,并把调查结果分成三种类型:A.已知道哪一天是母亲节的;B.知道但没有任何行动的;C.知道并问候母亲的.如图是根据调查结果绘制的统计图(部分),根据图中提供的信息,回答下列问题:
①已知A类学生占被调查学生人数的30%,则被调查学生有多少人?
②计算B类学生的人数并根据计算结果补全统计图;
③如果该校共有学生2000人,试估计这个学校学生中有多少人知道母亲节并问候了母亲.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在一块宽为12m,长为20m的矩形地面上修筑同样宽的道路,余下的部分种上草坪.要使草坪的面积为180m2,求道路的宽;
(2)现在对该矩形区域进行改造,如图2,在正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的.若道路与观赏亭的面积之和是矩形面积的,求道路的宽.
【答案】(1)道路宽为2米;(2)道路的宽为1米.
【解析】试题分析:(1)设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(20﹣x)(12﹣x)米2,进而即可列出方程,求出答案;
(2)设道路的宽为x米,则正方形边长为4x,根据道路与观赏亭的面积之和是矩形面积的,列方程求解即可.
试题解析:解:(1)设道路宽为x米,
根据题意得:(20﹣x)(12﹣x)=180
解得:x1=30(舍去),x2=2
答:道路宽为2米;
(2)设道路的宽为x米,
则可列方程:x(12-4x)+x(20-4x)+16x2=×20×12,
即:x2+4x-5=0,
解得:x1=1,x2=-5(舍去),
答:道路的宽为1米.
点睛:考查了一元二次方程的应用,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.另外还要注意解的合理性,从而确定取舍.
【题型】解答题
【结束】
10
【题目】如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.
(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线分别与直线AB、相交于点、,与互补,的平分线与的平分线交于点,与直线交于点,交于点,则下列说法中错误的是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是( )
A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为 ;
(3)试估算盒子里黑、白两种颜色的球各有多少只?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com