【题目】(1)如图1,∠AOC=α,∠BOC=β,若OM平分∠AOC,ON平分∠BOC,则∠MON= (用含α、β的式子表示);
(2)如图2,若将∠BOC绕点O逆时针旋转30°后得到∠EOD,OM平分∠AOD,ON平分∠COE,求∠MON的度数(用含α、β的式子表示);
(3)若∠BOC旋转90°至图3的位置,其他条件不变,则∠MON的度数是 (用含α、β的式子表示).
【答案】(1);(2);(3)
【解析】
(1)∠MON=∠COM+CON,根据已知条件,求出∠COM和CON即可;
(2)由已知可得∠COD=30°,∠DOE=β,∠AOD=∠AOC+∠COD=α+30°,∠COE=∠COD+DOE=β+30°,根据∠MON=∠MOD+∠NOC﹣∠COD,代入数值求出即可;
(3)由已知可得∠COD=90°,∠DOE=β,∠AOD=∠AOC+COD=90°+α,∠COE=∠COD+DOE=β+90°,根据∠MON=∠MOD+∠NOC﹣∠COD,代入数值求出即可.
解:(1)∵∠AOC=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,
∴∠COM= ,∠CON=,
∴∠MON=∠COM+CON=;
故答案为:;
(2)由题意可知:∠COD=30°,∠DOE=β,∠AOD=∠AOC+∠COD=α+30°,∠COE=∠COD+DOE=β+30°,
∵OM平分∠AOD,ON平分∠COE,
∴∠MOD=∠AOD,∠NOC=,
∴∠MON=∠MOD+∠NOC﹣∠COD==;
(3)由题意可得,∠COD=90°,∠DOE=β,∠AOD=∠AOC+COD=90°+α,∠COE=∠COD+DOE=β+90°,
∵OM平分∠AOD,ON平分∠COE,
∴∠MOD=∠AOD,∠NOC=,
∴∠MON=∠MOD+∠NOC﹣∠COD==,
故答案为:.
科目:初中数学 来源: 题型:
【题目】据某网站调查,2016年全国网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)请补全条形统计图;
(2)如果某市约有300万人口,请你估计该市最关注教育问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,请用列表法或树形图法表示抽取的两人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016青海省西宁市)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》中的一个问题.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,适与岸齐问水深、葭长各几何译文大意是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面.问水的深度与这根芦苇的长度分别是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.
(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_____,A,B两点间的距离是_____;
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_____,A,B两点间的距离为_____;
(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_____,A、B两点间的距离是_____;
(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点.
(1)该学习小组成员意外的发现图①中(三角板一边与CC重合),BN、CN、CD这三条线段之间存在一定的数量关系:CN2=BN2+CD2,请你对这名成员在图①中发现的结论说明理由;
(2)在图③中(三角板一直角边与OD重合),试探究图③中BN、CN、CD这三条线段之间的数量关系,直接写出你的结论.
(3)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上数大1,那么我们把这样的自然数叫做“相连数”.例如:234,4567,56789,…都是“相连数”.
(1)请直接写出最大的两位“相连数”与最小的三位“相连数”,并求它们的差.
(2)若某个“相连数”恰好等于其个位数的469倍,求这个“相连数”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在中,,,为直线上一动点(不与点,重合),以为边作正方形,连接.
(1)如图1,当点在线段上时,请直接写出:,,三条线段之间的数量关系为________.
(2)如图2,当点在线段的延长线上时,其他条件不变.(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请你写出正确的结论,并给出证明.
(3)如图3,当点在线段的反向延长线上时,且点,分别在直线的两侧,其他条件不变.请直接写出:,,三条线段之间的数量关系______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一张矩形纸片ABCD按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com