精英家教网 > 初中数学 > 题目详情

【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为(  )

A. B. 2 C. D. 2

【答案】C

【解析】

通过分析图象,点F从点ADas,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BEa.

过点DDEBC于点E

.

由图象可知,点F由点A到点D用时为as,FBC的面积为acm2..

AD=a.

DEADa.

DE=2.

当点FDB时,用s.

BD=.

RtDBE中,

BE=

∵四边形ABCD是菱形,

EC=a-1,DC=a

RtDEC中,

a2=22+(a-1)2.

解得a=.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,的直径,的切线,是切点,交于点

1)如图①,若,求的长;

2)如图②,若的中点,求证:直线的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AC分别在x轴上、y轴上,CB//OAOA=8,若点B的坐标为(a,b),b=.

(1)直接写出点ABC的坐标;

(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间

(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形中,对角线交于点,且点的中点,若的长为10,则的长可以是(

A. 510B. 812C. 1020D. 2040

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的有(

①在同一平面内不相交的两条线段必平行

②过两条直线外一点,一定可做直线,使,且

③过直线外一点有且只有一条直线与已知直线平行

④两直线被第三条直线所截得的同旁内角的平分线互相垂直

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式,

①如图1,根据图中阴影部分的面积可表示为__________,还可表示为___________,可以得到的恒等式是___________.

②类似地,用两种不同的方法计算同一各几何体的体积,也可以得到一个恒等式,如图2是边长为的正方体,被如图所示的分割线分成8块。用不同方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有ABC三种不同型号的卡片,每种卡片各有9.其中A型卡片是边长为3的正方形,B型卡片是相邻两边长分别为31的长方形,C型卡片是边长为1的正方形.从其中取若干张卡片(每种卡片至少取1张),若把取出的这些卡片拼成一个正方形,则所拼正方形的边长的最大值是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,E是边CD的中点,连接BE并延长与AD的延长线相较于点F

1)求证:四边形BDFC是平行四边形;

2)若△BCD是等腰三角形,求四边形BDFC的面积.

查看答案和解析>>

同步练习册答案