精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且(OA-8)2+
10-OC
=0
,OB=OC.
(1)求点B的坐标;
(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线段MR分别交直精英家教网线PH、OB于点E、G,点F为线段PM的中点,连接EF.
①判断EF与PM的位置关系;
②当t为何值时,EG=2?
分析:(1)根据已知得出OB=OC=10,BN=OA=8,即可得出B点的坐标;
(2)利用△BON∽△POH,得出对应线段成比例,即可得出S与t之间的函数关系式;
(3)①利用∠RPM+∠RMP=90°,∠HPD+∠HDP=90°,得出∠EMP=∠HPM,三角形三线合一得出;
②利用△MGB∽△N′BO,分别进行讨论得出当点G在点E上方时,以及当点G在点E下方时得出t的值即可.
解答:精英家教网解:(1)如图1,过点B作BN⊥OC,垂足为N
(OA-8)2+
10-OC
=0
,OB=OC,
∴OA=8,OC=10(1分)
∴OB=OC=10,BN=OA=8,
ON=
OB2-BN2
=6

∴B(6,8)(2分)

(2)如图1,∵∠BON=∠POH,∠ONB=∠OHP=90°.
∴△BON∽△POH,
BO
PO
=
ON
OH
=
BN
PH

∵PC=5t.∴OP=10-5t.
∵BO=10,PO=10-5t,ON=6,
10
10-5t
=
6
OH

∴OH=6-3t,
同理可得,PH=8-4t.
∴BH=OB-OH=10-(6-3t)=3t+4,
∴S=
1
2
(3t+4)(8-4t)=-6t2+4t+16(3分),
∴t的取值范围是:0≤t<2(4分)

(3)①EF⊥PM(5分)
∵MR⊥OC,PH⊥OB,
∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90°
∵OC=OB,
∴∠OCB=∠OBC.精英家教网
∵BC∥PM,
∴∠RPM=∠HDP,
∴∠RMP=∠HPD,即:∠EMP=∠HPM,
∴EM=EP
∵点F为PM的中点,
∴EF⊥PM(6分);
②如图2,过点B作BN′⊥OC,垂足为N′,BN′=8,CN′=4
∵BC∥PM,MR⊥OC,
∴△MRP≌△BN′C,
∴PR=CN′=4
设EM=x,则EP=x,在△PER中,∠ERP=90°,RE=MR-ME=8-x
有x2-(8-x)2=42
∴x=5,
∴ME=5
∵△MGB∽△N′BO,
MG
N′B
=
MB
N′O

∵PM∥CB,AB∥OC,
∴四边形BMPC是平行四边形.
∴BM=PC=5t.
第一种情况:当点G在点E上方时(如图2)
∵EG=2,
∴MG=EM-EG=5-2=3,精英家教网
3
8
=
5t
6

∴t=
9
20
(7分);

第二种情况:当点G在点E下方时(如图3)MG=ME+EG=5+2=7,
7
8
=
5t
6

∴t=
21
20
(8分)
∴当t=
9
20
21
20
时,EG=2.
点评:此题主要考查了相似三角形的性质与判定以及勾股定理的应用和直角梯形的性质等知识,利用△MGB∽△N′BO,分别进行讨论是难点问题,也容易漏解,应引起同学们的注意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案