【题目】已知圆锥的底面半径为5,母线长为8,则这个圆锥的侧面积是( )
A.13π
B.20π
C.40π
D.200π
科目:初中数学 来源: 题型:
【题目】如图,点P、Q是反比例函数y= 图像上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P、Q是反比例函数y= 图像上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 , △QMN的面积记为S2 , 则S1S2 . (填“>”或“<”或“=”)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲数为a×10n , 乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012 , 求a,n的值.(其中1≤a≤10,n为正整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD的两个顶点A、C在反比例函数(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)若△APO的面积为2,求点D到直线AC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各组中的四条线段成比例的是( )
A.1cm,2cm,20cm,40cmB.1cm,2cm,3cm,4cm
C.4cm,2cm,1cm,3cmD.5cm,10cm,15cm,20cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了调查居民的生活水平,有关部门对某居委会的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:
1.7 3.5 2.3 6.4 2.0 1.9 6.7 4.8 5.0 4.7
2.3 3.4 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8
3.0 5.1 7.0 3.1 2.9 4.9 5.8 3.6 3.0 4.2
4.0 3.9 5.1 6.3 1.8 3.2 5.1 5.7 3.9 3.1
2.5 2.8 4.5 4.9 5.3 2.6 7.2 1.9 5.0 3.8
(1)这50个家庭存款额的最大值、最小值分别是多少?它们相差多少?
(2)填表:
存款额x(万元) | 划记 | 户数 |
1.0≤x<2.0 | ||
2.0≤x<3.0 | ||
3.0≤x<4.0 | ||
4.0≤x<5.0 | ||
5.0≤x<6.0 | ||
6.0≤x<7.0 | ||
7.0≤x<8.0 |
(3)根据上表谈谈这50户家庭存款额的分布情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:.
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证.
(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:
在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com