精英家教网 > 初中数学 > 题目详情
△ABC内接于⊙O中,AD平分∠BAC交⊙O于D.

(1)如图1,连接BD,CD,求证:BD=CD
(2)如图2,若BC是⊙O直径,AB=8,AC=6,求BD长
(3)如图,若∠ABC的平分线与AD交于点E,求证:BD=DE
(1)答案见试题解析;(2);(3)答案见试题解析.

试题分析:(1)由AD平分∠BAC交⊙O于D,可得=,即可证得BD=CD;
(2)由BC是⊙O直径,根据直径所对的圆周角是直角,可得∠BAC=∠BDC=90°,然后由勾股定理求得答案;
(3)由∠ABC的平分线与AD交于点E,利用三角形外角的性质与圆周角定理可求得∠BED=∠DBE,继而可证得BD=DE.
试题解析:(1)证明:∵AD平分∠BAC交⊙O于D,∴=,∴BD=CD;
(2)解:∵BC是⊙O直径,∴∠BAC=∠BDC=90°,∵AB=8,AC=6,∴BC==10,∵BD=CD,∴BD=
(3)证明:∵AD平分∠BAC交⊙O于D,∠ABC的平分线与AD交于点E,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3,∠DBE=∠4+∠CBD,∵∠CBD=∠2,∴∠BED=∠DBE,∴BD=DE.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=,∠DPA=45°.

(1)求⊙O的半径;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明和同桌小聪在课后做作业时,对课本中的一道作业题,进行了认真探索.
【作业题】如图1,一个半径为100m的圆形人工湖如图所示,弦AB是湖上的一座桥,测得圆周角∠C=45°,求桥AB的长.

小明和小聪经过交流,得到了如下的两种解决方法:
方法一:延长BO交⊙O与点E,连接AE,得 Rt△ABE,∠E=∠C,∴AB=
方法二:作AB的弦心距OH,连接OB, ∴∠BOH=∠C,解Rt△OHB, ∴HB=,∴AB=
感悟:圆内接三角形的一边和这边的对锐角、圆的半径(或直径)这三者关系,可构成直角三角形,从而把一边和这边的对锐角﹑半径建立一个关系式.
(1)问题解决:受到(1)的启发,请你解下面命题:如图2,点A(3,0)、B(0,),C为直线AB上一点,过A、O、C的⊙E的半径为2.求线段OC的长.

(2)问题拓展:如图3,△ABC中,∠ ACB=75°,∠ABC=45°,AB=,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连结EF, 设⊙O半径为x, EF为y.①y关于x的函数关系式;②求线段EF长度的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知扇形的半径为30cm,圆心角为120度,求:
(1)扇形的面积.
(2)若用它卷成一个无底的圆锥形筒,求出这个圆锥形筒的高.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,的内接三角形,中弧AB上一点,延长至点,使

(1)求证:
(2)若,求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若用半径为r的圆形桌布将边长为60cm的正方形餐桌盖住,则r的最小值为       cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是(    )
A.B.3C.D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图O是圆心,半径OC⊥弦AB于点D,AB=8,OB=5,则OD等于   (   )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知圆心角为120°的扇形面积为12π,那么扇形的弧长为          

查看答案和解析>>

同步练习册答案