精英家教网 > 初中数学 > 题目详情
20.2015年春运第一天,某市海陆空铁共发送旅客228100人次,迎来春运客流量的首次高峰,将这个数据精确到万位,用科学记数法表示为(  )
A.0.23×106B.2.2×104C.22.8×104D.2.3×105

分析 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于228100有6位,所以可以确定n=6-1=5.
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.

解答 解:228100=2.3×105
故选:D.

点评 此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.函数$y=\frac{{\sqrt{x}}}{x-1}$的自变量x的取值范围是x≥0且x≠1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图.已知直线a,b被直线c所截,且a∥b,∠1=42°,那么∠2的度数为(  )
A.42°B.48°C.52°D.132°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q分别在边AC和边BC上,其中CQ=a,CP=b,过点P作AC的垂线l交AB于点R,作△PQR关于直线l对称的图形,得到△PQ′R.
(1)若点Q′恰为AB的中点,则b=2;当a=3,b=4,△PQR与△PQ′R组合而成的轴对称图形的形状是等腰三角形.
(2)若a=b,则
①当a为何值时,点Q′恰好落在AB上?
②若记△PQ′R与△PAR重叠部分的面积为S(cm2),求S与a的函数关系式,并写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.数学课上,老师和同学们对矩形纸片进行了图形变换的以下探究活动:
(1)如图1,若连接矩形ABCD的对角线AC、BD相交于点O,则Rt△ADC可由Rt△ABC经过旋转变换得到,这种旋转变换的旋转中心是点O、旋转角度是180°;
(2)如图2,将矩形纸片ABCD沿折痕EF对折、展平.再沿折痕GC折叠,使点B落在EF上的点B′处,这样能得到∠B′GC.求∠B′GC的度数.
(3)如图3,取AD边的中点P,剪下△BPC,将△BPC沿着射线BC的方向依次进行平移变换,每次均移动BC的长度,得到了△CDE、△EFG和△GHI(如图4).若BH=BI,BC=a,则:①证明以BD、BF、BH为三边构成的新三角形的是直角三角形;②若这个新三角形面积小于50$\sqrt{15}$,请求出a的最大整数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简($\frac{x}{x-1}$-$\frac{x}{1-x}$)÷$\frac{2x}{{x}^{2}-1}$,然后在-1,0,1,2四个数中选一个合适的代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.写出一个大于2而小于4的无理数$\sqrt{7}$、$\sqrt{8}$、$\root{3}{9}$、π….

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,△ABC中,已知BC=16,高AD=10,动点C′由点C沿CB向点B移动(不与点B重合).设CC′的长为x,△ABC′的面积为S,则S与x之间的函数关系式为(  )
A.S=80-5xB.S=5xC.S=10xD.S=5x+80

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简:($\frac{1}{x+1}$-1)÷$\frac{x}{{x}^{2}-1}$,再选择一个恰当的x值代入求值.

查看答案和解析>>

同步练习册答案