精英家教网 > 初中数学 > 题目详情
如图,在平行四边形ABCD的纸片中,AC⊥AB,AC与BD相交于O,将△ABC沿对角线AC翻转180°,得到△AB′C.
(1)求证:以A、C、D、B′为顶点的四边形是矩形;
(2)若四边形ABCD的面积S=12cm,求翻转后纸片部分的面积,即S△ACB
(1)证明:连接B′D,
∵在?ABCD中,AB=CD,ABCD,△ABC沿对角线AC翻转180°,
∴AB′=CD,∠BAC=∠B′AC,
又∵AC⊥CD,
∴∠BAC=∠B′AC=90°,
∴B,A,B′共线,
∴AB′CD,
∴四边形ACDB′为平行四边形,
∵∠B′AC=90°
∴?ACDB′为矩形;

(2)∵四边形是ABCD是平行四边形,
∴AB=CD,BC=AD,AC=CA,
∴△ABC≌△CDA,
∴S△ACB=
1
2
S?ABCD=
1
2
×12=6.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系内有两个点A(-1,-1),B(2,3),若M为x轴上一点,且使MB-MA最大,求M点的坐标,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1
(2)写出点A1,B1,C1的坐标(直接写答案).
A1______
B1______
C1______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把矩形纸片ABCD沿着EF折叠,使点B落在边AD上的点D处.点A落在点A′.
(1)试说明DE=BF;
(2)若AB=6,AD=8,求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图的方格纸中,左边图形到右边图形的变换是(  )
A.向右平移7格
B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换
C.绕AB的中点旋转180°,再以AB为对称轴作轴对称
D.以AB为对称轴作轴对称,再向右平移7格

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知梯形ABCD中,CDAB,将梯形对折,使点D,C分别落在AB上的D′,C′处,折痕为EF,若CD=3cm,AB=6cm,则AD′+BC′=______cm,EF=______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A处,则AE、AB、BF之间的关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了探索代数式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
CE=
(8-x)2+25
,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此时x=______;
(2)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

同步练习册答案