精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,EBC上一点,DFAEF.

(1)ΔABEΔDFA相似吗?请说明理由;

(2)AB=3,AD=6,BE=4,求DF的长.

【答案】(1)详见解析;(2)3.6.

【解析】

(1)由四边形ABCD是矩形结合DF⊥AE于点F易得:∠B=∠DFA=90°,∠AEB=∠DAF,从而可得△ABE∽△DFA;

(2)在△ABE中,由AB=3,BE=4,∠B=90°可得AE=5,由(1)中所得△ABE∽△DFA可得,结合AD=6即可求得DF的长.

(1) ΔABEΔDFA相似理由如下

四边形ABCD是矩形

∴AD//BC ,∠B=90°,

∴∠DAE=∠AEB,

DF⊥AE ,

∴∠B=∠AFD=90°,

∴△ABE∽△DFA ;

(2)Rt△ABE中,∠B=90°,AB=3,BE=4,

∴AE=5,

△ABE∽△DFA,

∴DF=3.6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.

(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)

(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究

如图,抛物线y=﹣x2x+x轴交于AB两点(点A在点B的左侧),与y轴交于点C,直线l经过BC两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CDBD.设点M运动的时间为tt0),请解答下列问题:

1)求点A的坐标与直线l的表达式;

2)①请直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时t的值;

②求点M运动的过程中线段CD长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4x轴的负半轴相交于点A,与y轴相交于点BAB=2.P在抛物线上,线段APy轴的正半轴交于点C,线段BPx轴相交于点D,设点P的横坐标为m.

1)求这条抛物线的解析式;

2)用含m的代数式表示线段CO的长;

3)当tanODC=时,求∠PAD的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线(其中为常数且)与轴交于两点,与轴交于点.

1)当时,求抛物线的对称轴方程及顶点坐标;

2)填空:__________,点的坐标为____________.(以上结果均用含的式子表示);

3)连接,线段的垂直平分线交抛物线的对称轴于点轴上存在一点(异于点)使得.

①求点的坐标;

②点关于抛物线对称轴的对称点为点,试求面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个半圆形桥洞截面示意图圆心为O直径AB是河底线弦CD是水位线CDAB且AB=26mOECD于点E水位正常时测得OECD=524

1求CD的长;

2现汛期来临水面要以每小时4 m的速度上升则经过多长时间桥洞会刚刚被灌满?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.

(1)证明:方程总有两个不相等的实数根;

(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线经过E(45)F2,-3),G(-25),H1,-4)四个点,选取其中两点用待定系数法能求出该抛物线解析式的是(

A.EFB.FGC.FHD.EG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D.

(1)求证:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的长.

查看答案和解析>>

同步练习册答案