【题目】在△ABC中AB=AC,中线BD将△ABC的周长分为12cm和15cm,则三角形底边长_____.
【答案】11cm或7cm
【解析】试题解析:如图,∵AB=AC,BD是AC边上的中线,
即AD=CD,
∴|(AB+AD)(BC+CD)|=|ABBC|=1512=3(cm),AB+BC+AC=2AB+BC=12+15=27cm,
若AB>BC,则ABBC=3cm,
又∵2AB+BC=27cm,
联立方程组并求解得:AB=10cm,BC=7cm,
10cm、10cm、7cm三边能够组成三角形;
若AB<BC,则BCAB=3cm,
又2AB+BC=27cm,
联立方程组并求解得:AB=8cm,BC=11cm,
8cm、8cm、11cm三边能够组成三角形;
∴三角形的各边长为10cm、10cm、7cm或8cm、8cm、11cm.
故答案为:7cm或11cm.
科目:初中数学 来源: 题型:
【题目】某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)求共抽取了多少名学生的征文;
(2)将上面的条形统计图补充完整;
(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;
(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:
(1)口袋中的白球约有多少个?
(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的个数是( )
①AD是∠BAC的平分线; ②∠ADC=60°;
③点D在线段ABC的垂直平分线上; ④BD=2CD.
A. 2个 B. 3个 C. 1个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD是∠BAC的平分线,AD的垂线平分线交AB于点F,交BC的延长线于点E,连接AE,DF.
求证:(1)∠EAD=∠EDA;(2)DF//AC;(3)∠EAC=∠B.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.
(1)求购进甲,乙两种钢笔每支各需多少元?
(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,
∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索题
图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)你认为图b中的影部分的正方形的边长等于 .
(2)请用两种不同的方法求图b中阴影部分的面积.
方法1: (只列式,不化简)
方法2: (只列式,不化简)
(3)观察图b你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,.
(4)根据(3)题中的等量关系,解决如下问题:若a+b=8,ab=5,则 (a-b)2= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com