【题目】如图,在△ABC中,AB=AC,D为三角形内一点,且△DBC为等边三角形.
(1)求证:直线AD垂直平分BC;
(2)以AB为一边,在AB的右侧画等边△ABE,连接DE,试判断以DA,DB,DE三条线段是否能构成直角三角形?请说明理由.
【答案】(1)见解析;(2)能构成直角三角形,理由见解析.
【解析】
(1)由AB=AC确定点A在线段BC的垂直平分线上,再由等边三角形△DBC知DB=DC,即可确定直线AD垂直平分BC;(2)连接CE,利用三角形全等证明AD=CE,再依据DB=DC,将三条边转化为同一个三角形的三条边,再求得∠DCE=900即可判断.
证明:(1)∵△DBC为等边三角形,
∴DB=DC,
∴D在BC的垂直平分线上,
∵AB=AC,
∴A在BC的垂直平分线上,
∴直线AD垂直平分BC;
(2)以DA,DB,DE三条线段能构成直角三角形;
连接CE,
∵∠ABE=∠DBC=60°,
∠ABE﹣∠DBE=∠DBC﹣∠DBE,
∴∠ABD=∠EBC,
在△EBC和△ABD中,,
∴△EBC≌△ABD,
∴∠BCE=∠ADB,AD=CE,
在△ADB和△ADC中, ,
∴△ADB≌△ADC,
∴∠ADB=∠ADC,
∴∠ADB=(360°﹣∠BCD)=150°,
∴∠BCE=∠BDA=150°,
∴∠DCE=∠BCE﹣∠BCD=150°﹣60°=90°,
∵CE=DA,DC=DB,
∴以DA,DB,DE三条线段能构成直角三角形.-
科目:初中数学 来源: 题型:
【题目】已知,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,试探究线段BD与CE的数量关系与直线BD与CE相交构成的锐角的度数.
(1)如图①,当点D,E分别在△ABC的边AB,AC上时,BD与CE的数量关系是___________,直线BD与CE相交构成的锐角的度数是_____________.
(2)将图①中△DAE绕点A逆时针旋转一个角度到图②的位置,则(1)中的两个结论是否仍然成立?说明理由.
(3)将图②中△DAE继续绕点A按逆时针方向继续旋转到点D落在CA的延长线时,请画出图形,并直接写出(1)中的两个结论是否仍然成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠C=90°,D是斜边上AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H点,交AE于G.
(1)试说明AH=BH
(2)求证:BD=CG.
(3)探索AE与EF、BF之间的数量关系
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中每个小正方形边长都是1.
(1)画出△ABC关于直线1对称的图形△A1BlCl;
(2)在直线l上找一点P,使PB=PC;(要求在直线1上标出点P的位置)
(3)连接PA、PC,计算四边形PABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且AB=4,MN=2,设AM=x,在下列关于△PMN是等腰三角形和对应P点个数的说法中,
①当x=0(即M、A两点重合)时,P点有6个;
②当P点有8个时,x=2﹣2;
③当△PMN是等边三角形时,P点有4个;
④当0<x<4﹣2时,P点最多有9个.
其中结论正确的是( )
A. ①② B. ①③ C. ②③ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为( )
A. π﹣6 B. π C. π﹣3 D. +π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)① 如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是 (写成平方差的形式);
② 将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是 (写成多项式相乘的形式);
(2)比较图1与图2的阴影部分的面积,可得乘法公式 .
(3)利用所得公式计算:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com