精英家教网 > 初中数学 > 题目详情
11.如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是(  )
A.3.6B.4
C.4.8D.PB的长度随B点的运动而变化

分析 作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.

解答 解:如图,过点E作EN⊥BM,垂足为点N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE,
∵△ABE、△BFO均为等腰直角三角形,
∴AB=BE,BF=BO;
在△ABO与△BEN中,
$\left\{\begin{array}{l}{∠BAO=∠NBE}\\{∠AOB=∠BNE}\\{AB=BE}\end{array}\right.$
∴△ABO≌△BEN(AAS),
∴BO=NE,BN=AO;
∵BO=BF,
∴BF=NE,
在△BPF与△NPE中,
$\left\{\begin{array}{l}{∠FBP=∠ENP}\\{∠FPB=∠EPN}\\{BF=NE}\end{array}\right.$
∴△BPF≌△NPE(AAS),
∴BP=NP=$\frac{1}{2}$BN;而BN=AO,
∴BP=$\frac{1}{2}$AO=$\frac{1}{2}×8$=4,
故选B.

点评 本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.已知点P(-5,2),点A与点P关于y轴对称,则A点的坐标为(5,2).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图是一次函数y=kx+2的图象,则方程kx=-2的解为x=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解下列方程:
(1)2x2+4x-1=0.              
(2)x(x-1)=2-2x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,O是△ABC内一点,BO=CO,∠ABO=∠ACO,求证:AO平分∠BAC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,△ABC和△CDE均为等腰三角形,AC=BC,CD=CE,AC>CD,∠ACB=∠DCE且点A、D、E在同一直线上,连接BE.

(1)若∠ACB=60°,则∠AEB的度数为60°;线段AD、BE之间的数量关系是相等;
(2)若∠ACB=n°,用n表示∠AEB并说明理由;
(3)如图2,若∠ACB=∠DCE=90°,点M是DE的中点.若CM=7,BE=10,试求AB的长.(请写全必要的证明和计算过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在正方形ABCD中,E为BC上任意一点(与B、C不重合)∠AEF=90°.观察图形:
(1)△ABE与△ECF是否相似?并证明你的结论.
(2)若E为BC的中点,连结AF,图中有哪些相似三角形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.现有四种说法:①-a表示负数;②若|x|=-x,则x<0;③绝对值最小的有理数是0;④倒数等于本身的数是1;其中正确的个数(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在?ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线与边CD或其延长线交于点G,过点E作EH∥AB与BG交于点H.

猜想:如图①,当BF的延长线与边CD交于点G时,若$\frac{AF}{EF}$=3,则$\frac{AB}{EH}$的值是3,$\frac{CD}{CG}$的值是$\frac{3}{2}$.
探究:如图②,当BF的延长线与边CD交于点G时,若$\frac{AF}{EF}$=$\frac{3}{2}$,求$\frac{CD}{CG}$的值.
应用:如图②,若$\frac{AF}{EF}$=m(m>0),利用探究得到的结论:$\frac{CD}{CG}$的值是$\frac{m}{2}$.(用含m的代数式表示)

查看答案和解析>>

同步练习册答案