【题目】. 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
【答案】(1);(2)列表见解析,.
【解析】
试题(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华 | -1 | 0 | 2 |
-1 | (-1,-1) | (-1,0) | (-1,2) |
0 | (0,-1) | (0,0) | (0,2) |
2 | (2,-1) | (2,0) | (2,2) |
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
科目:初中数学 来源: 题型:
【题目】已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC边中点.点M为线段BC上的一个动点(不与点C,点D重合),连接AM,将线段AM绕点M顺时针旋转90°,得到线段ME,连接EC.
(1)如图1,若点M在线段BD上.
① 依据题意补全图1;
② 求∠MCE的度数.
(2)如图2,若点M在线段CD上,请你补全图形后,直接用等式表示线段AC、CE、CM之间的数量关系 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产,已知生产每件产品的成本为40元.在销售过程中发现,年销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),第一年年获利(年获利=年销售额-生产成本-投资)为z(万元)
(1)试写出y与x之间的函数关系式(不必写出x的取值范围)
(2)试写出第一年年获利z与x之间的函数关系式(不必写出x的取值范围)
(3)请说明第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价
(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元.请你借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识迁移
当且时,因为≥,所以≥,从而≥(当时取等号).
记函数,由上述结论可知:当时,该函数有最小值为
直接应用
已知函数与函数, 则当____时,取得最小值为___.
变形应用
已知函数与函数,求的最小值,并指出取得该最小值时相应的的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千米为元;三是折旧费,它与路程的平方成正比,比例系数为.设该汽车一次运输的路程为千米,求当为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A.“打开电视剧,正在播足球赛”是必然事件
B.甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定
C.一组数据2,4,5,5,3,6的众数和中位数都是5
D.“掷一枚硬币正面朝上的概率是”表示每抛硬币2次就有1次正面朝上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.
(1)若矩形ABCD是“美丽四边形”,且AB=3,则BC= ;
(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC为直径,AP=1,PC=5,求另一条对角线BD的长;
(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,
(1)在图中画出点P1、P2、P3;
(2)继续将点P3绕点A旋转180°得到点P4,点P4绕点B旋转180°得到点P5,…,按此作法进行下去,则点P2020的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).
(1)求实数、、的值;
(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.
(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com