精英家教网 > 初中数学 > 题目详情

【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.

1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;

2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?

【答案】1w=-10x2+700x-10000;(2)当单价为35元时,该文具每天的利润最大;最大值为2250

【解析】

试题(1)因为销售单价元,所以根据当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.可表示出销售量=250-10x-25)件,然后根据每天所得的销售利润(元)=一件的利润×销售量,代入化简即可;

2)利用二次函数的性质,将(1)中的函数关系式配方即可得出结论.

试题解析:(1)由题意得,销售量=250-10x-25=-10x+500

w=x-20)(-10x+500

=-10x2+700x-10000

2w=-10x2+700x-10000=-10x-352+2250

故当单价为35元时,该文具每天的利润最大;最大值为2250 10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EF分别是ABAD的中点,连接ACECEFFC,且ECEF

(1)求证:△AEF∽△BCE

(2)若AC=2,求AB的长;

(3)在(2)的条件下,△ABC的外接圆圆心与△CEF的外接圆圆心之间的距离为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)已知△ABC的两边AB、AC的长恰好是关于x的方程x2+(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5

(1) 求证:AB≠AC

(2) 如果△ABC是以BC为斜边的直角三角形,求k的值

(3) 填空:当k=________时,△ABC是等腰三角形,△ABC的周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售一种玩具,每件的进货价为40元.经市场调研,当该玩具每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件,现该商店决定涨价销售.

1)当每件的销售价为53元,该玩具每天的销售数量为   件;

2)若商店销售该玩具每天获利2000元,每件玩具销售价应定为多少元?

3)若该玩具每件销售价不低于57元,同时,每天的销售量至少20件,求每件的销售价定为多少元时,销售该玩具每天获得的利润w最大?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到A'B'CMBC的中点,PA'B'的中点,连接PM.若BC2,∠BAC30°,则线段PM的最大值是(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把置于平面直角坐标系中,点A的坐标为,点B的坐标为,点P内切圆的圆心.将沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2019次滚动后,内切圆的圆心的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为⊙O外一点,PAPB分别切⊙OABCD切⊙O于点E,分别交PAPB于点CD,若PCD的周长为24,⊙O的半径是5,则点P到圆心O的距离_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是等边内一点,,将绕点按顺时针方向旋转60°得,连接,若,则的度数为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度hm)与它的飞行时间ts)满足二次函数关系,th的几组对应值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之间的函数关系式(不要求写t的取值范围);

(2)求小球飞行3s时的高度;

(3)问:小球的飞行高度能否达到22m?请说明理由.

查看答案和解析>>

同步练习册答案