【题目】如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )
A.4B.3C.2D.1
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.
(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.
(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.
(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.
(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物y=ax2+bx+c(b<0)与轴只有一个公共点.
(1)若公共点坐标为(2,0),求a、c满足的关系式;
(2)设A为抛物线上的一定点,直线l:y=kx+1-k与抛物线交于点B、C两点,直线BD垂直于直线y=-1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.
①求点A的坐标和抛物线的解析式;
②证明:对于每个给定的实数k,都有A、D、C三点共线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了对甲,乙两名同学进行学生会主席的竞选考核、召开了一次竞选答辩及民主测评会.由A,B,C,D,E五位教师评委对竞选答辩进行评分,并选出20名学生代表参加民主投票.竞选答辩的结果如下表所示:
评委 得分 选手 | A | B | C | D | E |
甲 | 92 | 88 | 90 | 94 | 96 |
乙 | 84 | 86 | 90 | 93 | 91 |
民主投票的结果为:甲8票,乙12票.
根据以上信息解答下列问题:
(1)甲,乙两人的竞选答辩得分分别是多少?
(2)如果综合得分=竞选答辩得分+民主投票得分,那么,甲,乙两人谁当选学生会主席?
(3)如果综合得分=竞选答辩得分民主投票得分,那么,当时,甲,乙两人谁当选学生会主席?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m).
参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上.
(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O对称的△A2B2C2;
(3)△A1B1C1与△A2B2C2关于某个点对称,则这个点的坐标为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com