【题目】如图,在矩形ABCD中,AB=4,BC=3,BD为对角线.点P从点B出发,沿线段BA向点A运动,点Q从点D出发,沿线段DB向点B运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到A时,两点都停止.设运动时间为t秒.
(1)是否存在某一时刻t,使得PQ∥AD?若存在,求出t的值;若不存在,说明理由.
(2)设四边形BPQC的面积为S,求S与t之间的函数关系式.
(3)是否存在某一时刻t,使得S四边形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,则说明理由.
(4)是否存在某一时刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,则说明理由.
【答案】(1) ;(2) S=﹣t2+t+6 ;(3) 满足条件的t的值为2;(4)
【解析】
(1)利用平行线分线段成比例定理构建方程即可解决问题.
(2)如图1中,作QE⊥AB于E,QF⊥BC于F,利用平行线分线段成比例定理构建方程求出QE,QF即可解决问题;
(3)根据S四边形BPQC:S矩形ABCD=9:20,构建方程解决问题即可;
(4)如图1中,作QE⊥AB于E,QF⊥BC于F.当PQ⊥QC时,△QEP∽△QFC,则,由此构建方程即可解决问题.
解:(1)∵四边形ABCD是矩形,
∴∠A=90°,
∵AB=4,AD=BC=3,
∴BD===5,
由题意BP=t,DQ=t,
∵PQ∥AD,
∴=,
∴=,
∴t=,
∴满足条件的t的值为;
(2)如图1中,作QE⊥AB于E,QF⊥BC于F.
∵QE∥AD,
∴=,
∴=,
∴QE=(5﹣t),
∵QF∥CD,
∴=,
∴=,
∴QF=(5﹣t),
∴S=S△PBQ+S△BCQ=PBQE+BCQF=t(5﹣t)+×3×(5﹣t)=﹣t2+t+6;
(3)由题意:(﹣t2+t+6):12=9:20,整理得:t2﹣t﹣2=0,
解得t=2或﹣1(舍弃),
∴满足条件的t的值为2;
(4)如图1中,作QE⊥AB于E,QF⊥BC于F.
当PQ⊥QC时,
∵∠EQF=∠PQC=90°,
∴∠EQP=∠FQC,
又∵∠QEP=∠QFC=90°,
∴△QEP∽△QFC,
∴,
∴=,
解得:t=,
∴满足条件的t的值为.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
则正确的结论是( )
A. (1)(2)(3)(4) B. (2)(4)(5) C. (2)(3)(4) D. (1)(4)(5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系中,点A(0,1),B(0,5),C(5,0),且点P在第一象限运动,且∠APB=45°,则PC的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)已知△ABC的两边AB、AC的长恰好是关于x的方程x2+(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5
(1) 求证:AB≠AC
(2) 如果△ABC是以BC为斜边的直角三角形,求k的值
(3) 填空:当k=________时,△ABC是等腰三角形,△ABC的周长为________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是圆上一动点,弦,是的平分线,.
(1)当等于多少度时,四边形有最大面积?最大面积是多少?
(2)当的长为多少时,四边形是梯形?说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com