精英家教网 > 初中数学 > 题目详情

【题目】如图,AC是矩形ABCD的对角线,过AC的中点OEF⊥AC,交BC于点E,交AD于点F,连接AECF

1)求证:四边形AECF是菱形;

2)若AB=DCF=30°,求四边形AECF的面积.(结果保留根号)

【答案】1)证明见解析(22

【解析】试题分析:(1)由过AC的中点OEF⊥AC,根据线段垂直平分线的性质,可得AF=CFAE=CEOA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;

2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.

试题解析:(1∵OAC的中点,且EF⊥AC

∴AF=CFAE=CEOA=OC

四边形ABCD是矩形,

∴AD∥BC

∴∠AFO=∠CEO

△AOF△COE中,

∴△AOF≌△COEAAS),

∴AF=CE

∴AF=CF=CE=AE

四边形AECF是菱形;

2四边形ABCD是矩形,

CD=AB=

RtCDF中,cosDCF=DCF=30°

CF==2

四边形AECF是菱形,

∴CE=CF=2

四边形AECF是的面积为:ECAB=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAD上一点,PQ垂直平分BE,分别交ADBEBC于点POQ,连接BPEQ

(1)求证:四边形BPEQ是菱形;

(2)若AB=6,FAB的中点,OF =4,求菱形BPEQ的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.
(1)根据题意,填空: ①顶点C的坐标为
②B点的坐标为
(2)求抛物线的解析式;
(3)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣ (t﹣19)2+8(0≤t≤40),且当点C到水面的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把三角形按如图所示的规律拼图案,其中第个图案中有4个三角形,第个图案中有6个三角形,第个图案中有8个三角形,,按此规律排列下去,则第个图案中三角形的个数为( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.

(1)求前4个台阶上数的和是多少?

(2)求第5个台阶上的数是多少?

(3)从下到上前多少个台阶上数的和为30.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:

(1)—2+(—3)—(+5)+(+7);

(2)(—4)×7×(—1);

(3)

(4).

(5)

(6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为三角形数,而把1,4,9,16…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在Rt△ABC中,AB=BC;在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DMBM

1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,

求证:BM=DMBM⊥DM

2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.

图① 图②

查看答案和解析>>

同步练习册答案